Molecular dynamics simulations of biomolecular processes are often discussed in terms of diffusive motion on a low-dimensional free energy landscape F ( 𝒙 ) . To provide a theoretical basis for this interpretation, one may invoke the system-bath ansatz á la Zwanzig. That is, by assuming a time scale separation between the slow motion along the system coordinate x and the fast fluctuations of the bath, a memory-free Langevin equation can be derived that describes the system’s motion on the free energy landscape F ( 𝒙 ) , which is damped by a friction field and driven by a stochastic force that is related to the friction via the fluctuation-dissipation theorem. While the theoretical formulation of Zwanzig typically assumes a highly idealized form of the bath Hamiltonian and the system-bath coupling, one would like to extend the approach to realistic data-based biomolecular systems. Here a practical method is proposed to construct an analytically defined global model of structural dynamics. Given a molecular dynamics simulation and adequate collective coordinates, the approach employs an “empirical valence bond”-type model which is suitable to represent multidimensional free energy landscapes as well as an approximate description of the friction field. Adopting alanine dipeptide and a three-dimensional model of heptaalanine as simple examples, the resulting Langevin model is shown to reproduce the results of the underlying all-atom simulations. Because the Langevin equation can also be shown to satisfy the underlying assumptions of the theory (such as a delta-correlated Gaussian-distributed noise), the global model provides a correct, albeit empirical, realization of Zwanzig’s formulation. As an application, the model can be used to investigate the dependence of the system on parameter changes and to predict the effect of site-selective mutations on the dynamics.

1.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University
,
Oxford
,
2001
).
2.
H. J. C.
Berendsen
,
Simulating the Physical World
(
Cambridge University Press
,
Cambridge
,
2007
).
3.
C.
Hijon
,
P.
Espanol
,
E.
Vanden-Eijnden
, and
R.
Delgado-Buscalioni
, “
Mori-Zwanzig formalism as a practical computational tool
, ”
Faraday Discuss.
144
,
301
(
2010
).
4.
J. N.
Onuchic
,
Z. L.
Schulten
, and
P. G.
Wolynes
, “
Theory of protein folding: The energy landscape perspective
, ”
Annu. Rev. Phys. Chem.
48
,
545
(
1997
).
5.
K. A.
Dill
and
H. S.
Chan
, “
From Levinthal to pathways to funnels: The “new view” of protein folding kinetics
, ”
Nat. Struct. Biol.
4
,
10
(
1997
).
6.
D. J.
Wales
,
Energy Landscapes
(
Cambridge University Press
,
Cambridge
,
2003
).
7.
R. B.
Best
and
G.
Hummer
, “
Coordimate-dependent diffusion in protein folding
, ”
Proc. Natl. Acad. Sci. U. S. A.
107
,
1088
(
2010
).
8.
J. C. F.
Schulz
,
L.
Schmidt
,
R. B.
Best
,
J.
Dzubiella
, and
R. R.
Netz
, “
Peptide chain dynamics in light and heavy water: Zooming in on internal friction
, ”
J. Am. Chem. Soc.
134
,
6273
(
2012
).
9.
J. E.
Straub
,
M.
Borkovec
, and
B. J.
Berne
, “
Calculation of dynamic friction on intramolecular degrees of freedom
, ”
J. Phys. Chem.
91
,
4995
(
1987
).
10.
J.
Gradišek
,
S.
Siegert
,
R.
Friedrich
, and
I.
Grabec
, “
Analysis of time series from stochastic processes
, ”
Phys. Rev. E
62
,
3146
(
2000
).
11.
J.
Timmer
, “
Parameter estimation in nonlinear stochastic differential equations
, ”
Chaos, Solitons Fractals
11
,
2571
(
2000
).
12.
R. B.
Best
and
G.
Hummer
, “
Diffusive model of protein folding dynamics with Kramers turnover in rate
, ”
Phys. Rev. Lett.
96
,
228104
(
2006
).
13.
O. F.
Lange
and
H.
Grubmüller
, “
Collective Langevin dynamics of conformational motions in proteins
, ”
J. Chem. Phys.
124
,
214903
(
2006
).
14.
I.
Horenko
,
C.
Hartmann
,
C.
Schütte
, and
F.
Noe
, “
Data-based parameter estimation of generalized multidimensional Langevin processes
, ”
Phys. Rev. E
76
,
016706
(
2007
).
15.
C.
Micheletti
,
G.
Bussi
, and
A.
Laio
, “
Optimal Langevin modeling of out-of-equilibrium molecular dynamics simulations
, ”
J. Chem. Phys.
129
,
074105
(
2008
).
16.
R.
Hegger
and
G.
Stock
, “
Multidimensional Langevin modeling of biomolecular dynamics
, ”
J. Chem. Phys.
130
,
034106
(
2009
).
17.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
Cambridge, UK
,
1997
).
18.
K. A.
Beauchamp
,
G. R.
Bowman
,
T. J.
Lane
,
L.
Maibaum
,
I. S.
Haque
, and
V. S.
Pande
, “
Msmbuilder2: Modeling conformational dynamics on the picosecond to millisecond scale
, ”
J. Chem. Theory Comput.
7
,
3412
(
2011
).
19.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noe
, “
Markov models of molecular kinetics: Generation and validation
, ”
J. Chem. Phys.
134
,
174105
(
2011
).
20.
G. R.
Bowman
,
V. S.
Pande
, and
F.
Noe
,
An Introduction to Markov State Models
(
Springer
,
Heidelberg
,
2013
).
21.
A.
Altis
,
M.
Otten
,
P. H.
Nguyen
,
R.
Hegger
, and
G.
Stock
, “
Construction of the free energy landscape of biomolecules via dihedral angle principal component analysis
, ”
J. Chem. Phys.
128
,
245102
(
2008
).
22.
S. V.
Krivov
and
M.
Karplus
, “
Hidden complexity of free energy surfaces for peptide (protein) folding
, ”
Proc. Natl. Acad. Sci. U. S. A.
101
,
14766
(
2004
).
23.
M. A.
Rohrdanz
,
W.
Zheng
, and
C.
Clementi
, “
Discovering mountain passes via torchlight: Methods for the definition of reaction coordinates and pathways in complex macromolecular reactions
, ”
Annu. Rev. Phys. Chem.
64
,
295
(
2013
).
24.
O. F.
Lange
and
H.
Grubmüller
, “
Generalized correlation for biomolecular dynamics
, ”
Proteins
62
,
1053
(
2006
).
25.
R. B.
Best
and
G.
Hummer
, “
Reaction coordinates and rates from transition paths
, ”
Proc. Natl. Acad. Sci. U. S. A.
102
,
6732
(
2005
).
26.
J. S.
Hub
and
B. L.
de Groot
, “
Detection of functional modes in protein dynamics
, ”
PLoS Comput. Biol.
5
,
e1000480
(
2009
).
27.
G.
Stock
,
A.
Jain
,
L.
Riccardi
, and
P. H.
Nguyen
, “
Exploring the energy landscape of small peptides and proteins by molecular dynamics simulations
,” in
Protein and Peptide Folding, Misfolding and Non-Folding
, edited by
R.
Schweitzer-Stenner
(
Wiley
,
New York
,
2012
), p.
57
.
28.
S. V.
Krivov
, “
On reaction coordinate optimality
, ”
J. Chem. Theory Comput.
9
,
135
(
2013
).
29.
G.
Perez-Hernandez
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noe
, “
Identification of slow molecular order parameters for Markov model construction
, ”
J. Chem. Phys.
139
,
015102
(
2013
).
30.
N.
Schaudinnus
,
A. J.
Rzepiela
,
R.
Hegger
, and
G.
Stock
, “
Data driven Langevin modeling of biomolecular dynamics
, ”
J. Chem. Phys.
138
,
204106
(
2013
).
31.
N.
Schaudinnus
,
B.
Bastian
,
R.
Hegger
, and
G.
Stock
, “
Multidimensional Langevin modeling of nonoverdamped dynamics
, ”
Phys. Rev. Lett.
115
,
050602
(
2015
).
32.
A.
Warshel
, “
Electrostatic basis of structure-function correlation in proteins
, ”
Acc. Chem. Res.
14
,
284
(
1981
).
33.
Y.-T.
Chang
and
W. H.
Miller
, “
An empirical valence bond model for constructing global potential energy surfaces for chemical reactions of polyatomic molecular systems
, ”
J. Chem. Phys.
94
,
5884
(
1990
).
34.
H.
Chen
,
P.
Liu
, and
G. A.
Voth
, “
Efficient multistate reactive molecular dynamics approach based on short-range effective potentials
, ”
J. Chem. Theory Comput.
6
,
3039
(
2010
).
35.
B.
Bastian
,
N.
Schaudinnus
, and
G.
Stock
, “
Data driven Langevin equations
” (unpublished).
36.
V.
Hornak
,
R.
Abel
,
A.
Okur
,
B.
Strockbine
,
A.
Roitberg
, and
C.
Simmerling
, “
Comparison of multiple Amber force fields and development of improved protein backbone parameters
, ”
Proteins: Struct., Funct., Bioinf.
65
,
712
(
2006
).
37.
S.
Pronk
 et al, “
Gromacs 4.5: A high-throughput and highly parallel open source molecular simulation toolkit
, ”
Bioinformatics
29
,
845
(
2013
).
38.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
Amsterdam
,
1997
).
39.
P. G.
Bolhuis
,
D.
Chandler
,
C.
Dellago
, and
P. L.
Geissler
, “
Transition path sampling: Throwing ropes over rough mountain passes, in the dark
, ”
Annu. Rev. Phys. Chem.
53
,
291
(
2002
).
40.
W. K.
Kim
and
R. R.
Netz
, “
The mean shape of transition and first-passage paths
, ”
J. Chem. Phys.
143
,
224108
(
2015
).
41.
H. S.
Chung
and
W. A.
Eaton
, “
Single-molecule fluorescence probes dynamics of barrier crossing
, ”
Nature
502
,
685
(
2013
).
42.
A.
Amadei
,
B.
de Groot
,
M.-A.
Ceruso
,
M.
Paci
,
A.
Di Nola
, and
H.
Berendsen
, “
A kinetic model for the internal motions of proteins: Diffusion between multiple harmonic wells
,”
Proteins: Struct., Funct., Genet.
35
,
283
(
1999
).
43.
K.
Okazaki
,
N.
Koga
,
S.
Takada
,
J. N.
Onuchic
, and
P. G.
Wolynes
, “
Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: Structure-based molecular dynamics simulations
, ”
Proc. Natl. Acad. Sci. U. S. A.
103
,
11844
(
2006
).
44.
P.
Maragakis
and
M.
Karplus
, “
Large amplitude conformational change in proteins explored with a plastic network model: Adenylate kinase
, ”
J. Mol. Biol.
352
,
807
(
2005
).
45.
W.
Zheng
,
B. R.
Brooks
, and
G.
Hummer
, “
Protein conformational transitions explored by mixed elastic network models
, ”
Proteins: Struct., Funct., Genet.
69
,
43
(
2007
).
46.
W.
Domcke
and
G.
Stock
, “
Theory of ultrafast nonadiabatic excited-state processes and their spectroscopic detection in real time
, ”
Adv. Chem. Phys.
100
,
1
(
1997
).
47.
A.
Jain
,
I.
Park
, and
N.
Vaideh
, “
Equipartition principle for internal coordinate molecular dynamics
, ”
J. Chem. Theory Comput.
8
,
2581–2587
(
2012
).
48.
G.
Hummer
, “
Position-dependent diffusion coefficients and free energies from Bayesian analysis of equilibrium and replica molecular dynamics simulations
, ”
New J. Phys.
7
,
34
(
2005
).
49.
B.
Carmeli
and
A.
Nitzan
, “
Theory of activated rate processes: Position dependent friction
, ”
Chem. Phys. Lett.
102
,
517
(
1983
).
50.
B. J.
Berne
,
M. E.
Tuckerman
,
J. E.
Straub
, and
A. L. R.
Bug
, “
Dynamic friction on rigid and flexible bonds
, ”
J. Chem. Phys.
93
,
5084
(
1990
).
51.
G. R.
Haynes
,
G. A.
Voth
, and
E.
Pollak
, “
A theory for the activated barrier crossing rate constant in systems influenced by space and time dependent friction
, ”
J. Chem. Phys.
101
,
7811
(
1994
).
52.
E.
Neria
and
M.
Karplus
, “
A position dependent friction model for solution reactions in the high friction regime: Proton transfer in triosephosphate isomerase (TIM)
, ”
J. Chem. Phys.
105
,
10812
(
1996
).
53.
M.
Hinczewski
,
Y.
von Hansen
,
J.
Dzubiella
, and
R. R.
Netz
, “
How the diffusivity profile reduces the arbitrariness of protein folding free energies
, ”
J. Chem. Phys.
132
,
245103
(
2010
).
54.
A.
Berezhkovskii
and
A.
Szabo
, “
Time scale separation leads to position-dependent diffusion along a slow coordinate
, ”
J. Chem. Phys
135
,
074108
(
2011
).
55.
B.
Keller
,
X.
Daura
, and
W. F.
van Gunsteren
, “
Comparing geometric and kinetic cluster algorithms for molecular simulation data
, ”
J. Chem. Phys.
132
,
074110
(
2010
).
56.
A.
Rodriguez
and
A.
Laio
, “
Clustering by fast search and find of density peaks
, ”
Science
344
,
1492
(
2014
).
57.
F.
Sittel
and
G.
Stock
, “
Robust density-based clustering to identify metastable conformational states of proteins
, ”
J. Chem. Theory Comput.
12
,
2426–2435
(
2016
).
58.
L. D.
Schuler
,
X.
Daura
, and
W. F.
van Gunsteren
, “
An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase
, ”
J. Comput. Chem.
22
,
1205
(
2001
).
59.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
, and
J.
Hermans
, “
Interaction models for water in relation to protein hydration
,” in
Intermolecular Forces
, edited by
B.
Pullman
(
D. Reidel Publishing Company
,
Dordrecht
,
1981
), pp.
331
342
.
60.
M.
Fixman
, “
Classical statistical mechanics of constraints: A theorem and application to polymers
, ”
Proc. Natl. Acad. Sci. U. S. A.
71
,
3050
(
1974
).

Supplementary Material

You do not currently have access to this content.