We propose a simple O ( N log N ) scaling expression in reciprocal space for evaluating the ion–electron potential of crystalline solids. The expression replaces the long-range ion–electron potential with an equivalent localized charge distribution and corresponding boundary conditions on the unit cell. Given that no quadratic scaling structure factor is required—as used in traditional methods—the expression shows the inherent O ( N log N ) behavior, and is well suited to simulating large-scale systems within orbital-free density functional theory. The scheme is implemented in the ATLAS software package and benchmarked by using a solid Mg body-centered cubic lattice containing tens of thousands of atoms in the unit cell. The test results show that the method can efficiently simulate large scale crystals with high computational accuracy.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
M. C.
Payne
,
M. P.
Teter
,
D. C.
Allan
,
T.
Arias
, and
J.
Joannopoulos
,
Rev. Mod. Phys.
64
,
1045
(
1992
).
4.
Y. A.
Wang
and
E. A.
Carter
, in
Theoretical Methods in Condensed Phase Chemistry
(
Springer
,
2002
), pp.
117
184
.
5.
T. A.
Wesolowski
and
Y. A.
Wang
,
Recent Progress in Orbital-free Density Functional Theory
(
World Scientific
,
2013
).
6.
G. S.
Ho
,
V. L.
Lignères
, and
E. A.
Carter
,
Comput. Phys. Commun.
179
,
839
(
2008
).
7.
W.
Mi
,
X.
Shao
,
C.
Su
,
Y.
Zhou
,
S.
Zhang
,
Q.
Li
,
H.
Wang
,
L.
Zhang
,
M.
Miao
,
Y.
Wang
, and
Y.
Ma
,
Comput. Phys. Commun.
200
,
87
(
2016
).
8.
E.
Wigner
and
F.
Seitz
,
Phys. Rev.
46
,
509
(
1934
).
9.
E. P.
Wigner
and
F.
Seitz
,
On the Constitution of Metallic Sodium. II
(
Springer
,
Berlin, Heidelberg
,
1997
), pp.
509
524
.
10.
K.
Fuchs
,
Proc. R. Soc. London, Ser. A
151
,
585
(
1935
).
11.
J.
Ihm
,
A.
Zunger
, and
M. L.
Cohen
,
J. Phys. C: Solid State Phys.
12
,
4409
(
1979
).
12.
J.
Pask
and
P.
Sterne
,
Phys. Rev. B
71
,
113101
(
2005
).
13.
14.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
15.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
16.
L.
Hung
and
E. A.
Carter
,
Chem. Phys. Lett.
475
,
163
(
2009
).
17.
M.
Frigo
and
S. G.
Johnson
, in
Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing
(
IEEE
,
1998
), Vol. 3, pp.
1381
1384
.
18.
R. M.
Martin
,
Electronic Structure: Basic Theory and Practical Methods
(
Cambridge University Press
,
2004
).
19.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
20.
W.
Mi
,
S.
Zhang
,
Y.
Wang
,
Y.
Ma
, and
M.
Miao
,
J. Chem. Phys.
144
,
134108
(
2016
).
21.
T.
Ono
and
K.
Hirose
,
Phys. Rev. Lett.
82
,
5016
(
1999
).
22.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. I.
Probert
,
K.
Refson
, and
M. C.
Payne
,
Z. Kristallogr. - Cryst. Mater.
220
,
567
(
2005
).
23.
A.
Keane
,
Aust. J. Phys.
7
,
322
(
1954
).
You do not currently have access to this content.