Intermolecular interactions in the crystals of tetra- and penta-thienoacene were studied using ab initio molecular orbital calculations for evaluating the magnitude of characteristic S⋯S interactions with great attention paid to their origin. The interactions between the π-stacked neighboring molecules are significantly greater than those between the neighboring molecules exhibiting the S⋯S contact, although it has sometimes been claimed that the S⋯S interactions play important roles in adjusting the molecular arrangement of sulfur-containing polycyclic aromatic molecules in the crystals owing to short S⋯S contacts. The coupled cluster calculations with single and double substitutions with noniterative triple excitation interaction energies at the basis set limit estimated for the π-stacked and S⋯S contacted neighboring molecules in the tetrathienoacene crystal are −11.17 and −4.27 kcal/mol, respectively. Those for π-stacked molecules in the pentathienoacene crystal is −14.38 kcal/mol, while those for S⋯S contacted molecules are −7.02 and −6.74 kcal/mol. The dispersion interaction is the major source of the attraction between the π-stacked and S⋯S contacted molecules, while the orbital-orbital interactions are repulsive: The orbital-orbital interactions, which are significant for charge carrier transport properties, are not much more than the results of the short S⋯S contact caused by the strong dispersion interactions. Besides, the intermolecular interaction energy calculated for a trithienoacene dimer has strong orientation dependence.

1.
F.
Garnier
,
A.
Yassar
,
R.
Hajlaoui
,
G.
Horowitz
,
F.
Deloffre
,
B.
Servet
,
S.
Ries
, and
P.
Alnot
,
J. Am. Chem. Soc.
115
,
8716
8721
(
1993
).
2.
J. G.
Laquindanum
,
H. E.
Katz
, and
A. J.
Lovinger
,
J. Am. Chem. Soc.
120
,
664
672
(
1998
).
3.
K.
Xiao
,
Y. Q.
Liu
,
T.
Qi
,
W.
Zhang
,
F.
Wang
,
J. H.
Gao
,
W. F.
Qiu
,
Y. Q.
Ma
,
G. L.
Cui
,
S. Y.
Chen
,
X. W.
Zhan
,
G.
Yu
,
J. G.
Qin
,
W. P.
Hu
, and
D. B.
Zhu
,
J. Am. Chem. Soc.
127
,
13281
13286
(
2005
).
4.
J.
Casado
,
M. M.
Oliva
,
M. C. R.
Delgado
,
R. P.
Ortiz
,
J. J.
Quirante
,
J. T. L.
Navarrete
,
K.
Takimiya
, and
T.
Otsubo
,
J. Phys. Chem. A
110
,
7422
7430
(
2006
).
5.
R. P.
Ortiz
,
J.
Casado
,
V.
Hernández
,
J. T. L.
Navarrete
,
E.
Ortí
,
P. M.
Viruela
,
V. B.
Milián
,
S.
Hotta
,
G.
Zotti
,
S.
Zecchin
, and
B.
Vercelli
,
Adv. Funct. Mater.
16
,
531
536
(
2006
).
6.
A. R.
Murphy
and
J. M. J.
Frechet
,
Chem. Rev.
107
,
1066
1096
(
2007
).
7.
T.
Yamamoto
and
K.
Takimiya
,
J. Am. Chem. Soc.
129
,
2224
2225
(
2007
).
8.
A.
Facchetti
,
Mater. Today
10
,
28
37
(
2007
).
9.
S.
Shinamura
,
E.
Miyazaki
, and
K.
Takimiya
,
J. Org. Chem.
75
,
1228
1234
(
2010
).
10.
C.
Wang
,
H.
Dong
,
W.
Hu
,
Y.
Liu
, and
D.
Zhu
,
Chem. Rev.
112
,
2208
2267
(
2012
).
11.
M.
Nakano
,
H.
Mori
,
S.
Shinamura
, and
K.
Takimiya
,
Chem. Mater.
24
,
190
198
(
2012
).
12.
L.
Pandey
,
C.
Risko
,
J. E.
Norton
, and
J.-L.
Bredas
,
Macromolecules
45
,
6405
6414
(
2012
).
13.
C. M.
Shaw
,
X.
Zhang
,
L. S.
Miguel
,
A. J.
Matzger
, and
D. C.
Martin
,
J. Mater. Chem. C
1
,
3686
3694
(
2013
).
14.
W.
Jiang
,
Y.
Li
, and
Z.
Wang
,
Chem. Soc. Rev.
42
,
6113
6127
(
2013
).
15.
C.
Niebel
,
Y.
Kim
,
C.
Ruzie
,
J.
Karpinska
,
B.
Chattopadhyay
,
G.
Schweicher
,
A.
Richard
,
V.
Lemaur
,
Y.
Olivier
,
J.
Cornil
,
A. R.
Kennedy
,
Y.
Diao
,
W.-Y.
Lee
,
S.
Mannsfeld
,
Z.
Bao
, and
Y. H.
Geerts
,
J. Mater. Chem. C
3
,
674
685
(
2015
).
16.
J. M.
Williams
,
J. R.
Ferraro
,
R. J.
Thorn
,
K. D.
Carlson
,
U.
Geiser
,
H. H.
Wang
,
A. M.
Kini
, and
M.-H.
Whangbo
,
Organic Superconductors
(
Prentice Hall
,
Englewood Cliffs, NJ
,
1992
).
17.
K.
Yamada
,
T.
Okamoto
,
K.
Kudoh
,
A.
Wakamiya
, and
S.
Yamaguchi
,
Appl. Phys. Lett.
90
,
072102
(
2007
).
18.
J. J.
Novoa
,
M. C.
Rovira
,
C.
Rovira
,
J.
Veciana
, and
J.
Tarrés
,
Adv. Mater.
7
,
233
237
(
1995
).
19.
Y.
Mazaki
and
K.
Kobayashi
,
J. Chem. Soc., Perkin Trans. 2
1992
,
761
764
.
20.
X.
Zhang
,
A. P.
Cote
, and
A. J.
Matzger
,
J. Am. Chem. Soc.
127
,
10502
10503
(
2005
).
21.
D. B.
Werz
,
R.
Gleiter
, and
F.
Rominger
,
J. Am. Chem. Soc.
124
,
10638
10639
(
2002
).
22.
R.
Gleiter
,
D. B.
Werz
, and
B. J.
Rausch
,
Chem. - Eur. J.
9
,
2676
2683
(
2003
).
23.
K.
Kobayashi
,
H.
Masu
,
A.
Shuto
, and
K.
Yamaguchi
,
Chem. Mater.
17
,
6666
6673
(
2005
).
24.
T.
Kimoto
,
K.
Tanaka
,
M.
Kawahata
,
K.
Yamaguchi
,
S.
Otsubo
,
Y.
Sakai
,
Y.
Ono
,
A.
Ohno
, and
K.
Kobayashi
,
J. Org. Chem.
76
,
5018
5025
(
2011
).
25.
P.
Sanz
,
M.
Yanez
, and
O.
Mo
,
J. Phys. Chem. A
106
,
4661
4668
(
2002
).
26.
P.
Sanz
,
M.
Yanez
, and
O.
Mo
,
Chem. - Eur. J.
9
,
4548
4555
(
2003
).
27.
C.
Bleiholder
,
D. B.
Werz
,
H.
Koppel
, and
R.
Gleiter
,
J. Am. Chem. Soc.
128
,
2666
2674
(
2006
).
28.
C.
Bleiholder
,
R.
Gleiter
,
D. B.
Werz
, and
H.
Koppel
,
Inorg. Chem.
46
,
2249
2260
(
2007
).
29.
S.
Zahn
,
R.
Frank
,
E.
Hey-Hawkins
, and
B.
Kirchner
,
Chem. - Eur. J.
17
,
6034
6038
(
2011
).
30.
G.
Sánchez-Sanz
,
C.
Trujillo
,
I.
Alkorta
, and
J.
Elguero
,
Chem. Phys. Chem
13
,
496
503
(
2012
).
31.
S.
Hayashi
and
W.
Nakanishi
,
Bull. Chem. Soc. Jpn.
81
,
1605
1615
(
2008
).
32.
R.
Silaghi-Dumitrescu
and
A.
Lupan
,
Cent. Eur. J. Chem.
11
,
457
463
(
2013
).
33.
X.
Zhang
,
Z.
Gong
,
J.
Li
, and
T.
Lu
,
J. Chem. Inf. Model.
55
,
2138
2153
(
2015
).
34.
G. R.
Desiraju
and
T.
Steiner
,
The Weak Hydrogen Bond
(
Oxford University Press
,
New York
,
1999
).
35.
T. H.
Dunning
, Jr.
,
J. Phys. Chem. A
104
,
9062
9080
(
2000
).
36.
S.
Tsuzuki
,
T.
Uchimaru
,
K.
Matsumura
,
M.
Mikami
, and
K.
Tanabe
,
J. Chem. Phys.
110
,
11906
11910
(
1999
).
37.
S.
Tsuzuki
,
K.
Honda
,
T.
Uchimaru
,
M.
Mikami
, and
K.
Tanabe
,
J. Am. Chem. Soc.
124
,
104
112
(
2002
).
38.
M. O.
Sinnokrot
,
E. V.
Valeev
, and
C. D.
Sherrill
,
J. Am. Chem. Soc.
124
,
10887
10893
(
2002
).
39.
S.
Tsuzuki
,
K.
Honda
,
T.
Uchimaru
, and
M.
Mikami
,
J. Chem. Phys.
120
,
647
659
(
2004
).
40.
S.
Tsuzuki
,
K.
Honda
, and
R.
Azumi
,
J. Am. Chem. Soc.
124
,
12200
12209
(
2002
).
41.
S.
Tsuzuki
,
K.
Honda
,
T.
Uchimaru
, and
M.
Mikami
,
J. Chem. Phys.
122
,
144323
(
2005
).
42.
B. W.
Hopkins
and
G. S.
Tschumper
,
J. Phys. Chem. A
108
,
2941
2948
(
2004
).
43.
K.
Shibasaki
,
A.
Fujii
,
N.
Mikami
, and
S.
Tsuzuki
,
J. Phys. Chem. A
110
,
4397
4404
(
2006
).
44.
K.
Shibasaki
,
A.
Fujii
,
M.
Mikami
, and
S.
Tsuzuki
,
J. Phys. Chem. A
111
,
753
758
(
2007
).
45.
A.
Fujii
,
K.
Shibasaki
,
T.
Kazama
,
R.
Itaya
,
N.
Mikamia
, and
S.
Tsuzuki
,
Phys. Chem. Chem. Phys.
10
,
2836
2843
(
2008
).
46.
P.
Hobza
and
J.
Sponer
,
J. Am. Chem. Soc.
124
,
11802
11808
(
2002
).
47.
P.
Jurecka
,
J.
Sponer
, and
P.
Hobza
,
J. Phys. Chem. B
108
,
5466
5471
(
2004
).
48.
P.
Jurecka
,
J.
Sponer
,
J.
Cerny
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
1993
(
2006
).
49.
S.
Grimme
,
J. Chem. Phys.
118
,
9095
9102
(
2003
).
50.
T.
Takatani
and
C. D.
Sherrill
,
Phys. Chem. Chem. Phys.
9
,
6106
6114
(
2007
).
51.
B.
Delley
,
J. Chem. Phys.
92
,
508
517
(
1990
).
52.
B.
Delley
,
J. Phys. Chem.
100
,
6107
6110
(
1996
).
53.
B.
Delley
,
J. Chem. Phys.
113
,
7756
7764
(
2000
).
54.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
55.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, 2009.
56.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
622
(
1934
).
57.
M.
Head-Gordon
,
J. A.
Pople
, and
M. J.
Frisch
,
Chem. Phys. Lett.
153
,
503
506
(
1988
).
58.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
5975
(
1987
).
59.
B. J.
Ransil
,
J. Chem. Phys.
34
,
2109
2118
(
1961
).
60.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
566
(
1970
).
61.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
9646
(
1997
).
62.
S.
Tsuzuki
,
K.
Honda
,
T.
Uchimaru
,
M.
Mikami
, and
K.
Tanabe
,
J. Am. Chem. Soc.
122
,
3746
3753
(
2000
).
63.
A. J.
Stone
,
The Theory of Intermolecular Forces
, 2nd ed. (
Clarendon Press
,
Oxford
,
2013
).
64.
A. J.
Stone
and
M.
Alderton
,
Mol. Phys.
56
,
1047
1064
(
1985
).
65.
A. J.
Stone
,
A.
Dullweber
,
M. P.
Hodges
,
P. L. A.
Popelier
, and
D. J.
Wales
,
Orient: A Program for Studying Interactions Between Molecules Version 3.2
(
University of Cambridge
,
1995
).
66.
A. J.
Stone
,
J. Chem. Theory Comput.
1
,
1128
1132
(
2005
).
67.
A. J.
Stone
,
Mol. Phys.
56
,
1065
1082
(
1985
).
68.
P. T.
van Duijnen
and
M.
Swart
,
J. Phys. Chem. A
102
,
2399
2407
(
1998
).
69.
F.
Bertinelli
,
P.
Palmieri
,
C.
Stremmenos
,
G.
Pelizzi
, and
C.
Taliani
,
J. Phys. Chem.
87
,
2317
2322
(
1983
).
70.
S.
Tsuzuki
and
H. P.
Luthi
,
J. Chem. Phys.
114
,
3949
3957
(
2001
).
71.
S.
Tsuzuki
and
N.
Sato
,
J. Phys. Chem. B
117
,
6849
6855
(
2013
).

Supplementary Material

You do not currently have access to this content.