The use of damping functions in empirical dispersion correction schemes is common and widespread. These damping functions contain scaling and damping parameters, and they are usually optimized for the best performance in practical systems. In this study, it is shown that the overfitting problem can be present in current damping functions, which can sometimes yield erroneous results for real applications beyond the nature of training sets. To this end, we present a damping function called linear soft damping (lsd) that suffers less from this overfitting. This linear damping function damps the asymptotic curve more softly than existing damping functions, attempting to minimize the usual overcorrection. The performance of the proposed damping function was tested with benchmark sets for thermochemistry, reaction energies, and intramolecular interactions, as well as intermolecular interactions including nonequilibrium geometries. For noncovalent interactions, all three damping schemes considered in this study (lsd, lg, and BJ) roughly perform comparably (approximately within 1 kcal/mol), but for atomization energies, lsd clearly exhibits a better performance (up to 2-6 kcal/mol) compared to other schemes due to an overfitting in lg and BJ. The number of unphysical parameters resulting from global optimization also supports the overfitting symptoms shown in the latter numerical tests.

1.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford, UK
,
1989
).
2.
R. M.
Dreizler
and
E. K. U.
Gross
,
Density Functional Theory
(
Springer
,
Berlin
,
1990
).
3.
A.
Heßelmann
,
J. Chem. Theory Comput.
9
,
273
(
2013
).
4.
Y.
Liu
and
W. A.
Goddard
III
,
Mater. Trans.
50
,
1664
(
2009
).
5.
Y.
Zhao
,
N. E.
Schultz
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
2
,
364
(
2006
).
6.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
4
,
1849
(
2008
).
7.
E. G.
Hohenstein
,
S. T.
Chill
, and
C. D.
Sherrill
,
J. Chem. Theory Comput.
4
,
1996
(
2008
).
8.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
92
,
246401
(
2004
).
9.
D. C.
Langreth
,
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
P.
Hyldgaard
, and
B. I.
Lundqvist
,
Int. J. Quantum Chem.
101
,
599
(
2005
).
10.
O.
Vydrov
and
T.
Van Voorhis
,
Phys. Rev. Lett.
103
,
063004
(
2009
).
11.
E. R.
Johnson
and
A. D.
Becke
,
J. Chem. Phys.
123
,
24101
(
2005
).
12.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
123
,
154101
(
2005
).
13.
E. R.
Johnson
and
A. D.
Becke
,
J. Chem. Phys.
124
,
174104
(
2006
).
14.
A. D.
Becke
and
E. R.
Johnson
,
J. Chem. Phys.
127
,
124108
(
2007
).
15.
A.
Tkatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
,
073005
(
2009
).
16.
A.
Tkatchenko
,
R. A.
DiStasio
, Jr.
,
R.
Car
, and
M.
Scheffler
,
Phys. Rev. Lett.
108
,
236402
(
2012
).
17.
T.
Sato
and
H.
Nakai
,
J. Chem. Phys.
131
,
224104
(
2009
).
18.
Y.
Ikabata
,
T.
Sato
, and
H.
Nakai
,
Int. J. Quantum Chem.
113
,
257
(
2013
).
19.
Y.
Ikabata
and
H.
Nakai
,
J. Chem. Phys.
137
,
124106
(
2012
).
20.
B. J.
Janesko
,
T. M.
Henderson
, and
G. E.
Scuseria
,
J. Chem. Phys.
130
,
081105
(
2009
).
21.
B. J.
Janesko
,
T. M.
Henderson
, and
G. E.
Scuseria
,
J. Chem. Phys.
131
,
034110
(
2009
).
22.
Y.
Zhao
,
J.
Lynch
, and
D. G.
Truhlar
,
J. Phys. Chem. A
108
,
4786
(
2004
).
23.
S.
Grimme
,
J. Chem. Phys.
124
,
034108
(
2006
).
24.
I. Y.
Zhang
,
X.
Xu
, and
W. A.
Goddard
III
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
4963
(
2009
).
25.
I. Y.
Zhang
,
X.
Xu
,
Y.
Jung
, and
W. A.
Goddard
III
,
Proc. Natl. Acad. Sci. U. S. A.
108
,
19896
(
2011
).
26.
S.
Grimme
,
J. Comput. Chem.
25
,
1463
(
2004
).
27.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
28.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
29.
J.
Antony
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
8
,
5287
(
2006
).
30.
J.
Antony
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
10
,
2722
(
2008
).
31.
M.
Parac
,
M.
Etinski
,
M.
Peric
, and
S.
Grimme
,
J. Chem. Theory Comput.
1
,
1110
(
2005
).
32.
Y.
Liu
and
W. A.
Goddard
III
,
J. Phys. Chem. Lett
1
,
2550
(
2010
).
33.
Q.
Wu
and
W.
Yang
,
J. Chem. Phys.
116
,
515
(
2002
).
34.
H.
Kim
,
J.-M.
Choi
, and
W. A.
Goddard
III
,
J. Phys. Chem. Lett
3
,
360
(
2012
).
35.
U.
Zimmerli
,
M.
Parrinello
, and
P.
Koumoutsakos
,
J. Chem. Phys.
120
,
2693
(
2004
).
36.
J.-D.
Chai
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
10
,
6615
(
2008
).
37.
C. A.
Morgado
,
J. P.
McNamara
,
I. H.
Hillier
,
N. A.
Burton
, and
M. A.
Vincent
,
J. Chem. Theory Comput.
3
,
1656
(
2007
).
38.
P.
Jurecka
,
J.
Černý
,
P.
Hobza
, and
D. R.
Salahub
,
J. Comput. Chem.
28
,
555
(
2006
).
39.
D. G. A.
Smith
,
L. A.
Burns
,
K.
Patkowski
, and
C. D.
SHerrill
,
J. Phys. Chem. Lett.
7
,
2197
(
2016
).
40.
T.
Markovich
,
M. A.
Blood-Forsythe
,
D.
Rappoport
,
D.
Kim
, and
A.
Aspuru-Guzik
, “Calibration of the many-body dispersion range-separation parameter,” e-print arXiv:1605.04987 (2016).
41.
S.
Grimme
,
J.
Antony
,
T.
Schwabe
, and
C.
Mück-Lichtenfeld
,
Org. Biomol. Chem.
5
,
741
(
2007
).
42.
M.
Elstner
,
P.
Hobza
,
T.
Frauenheim
,
S.
Suhai
, and
E.
Kaxiras
,
J. Chem. Phys.
114
,
5149
(
2001
).
43.
F.
Ortmann
,
F.
Bechstedt
, and
W.
Schmidt
,
Phys. Rev. B
73
,
205101
(
2006
).
44.
K. T.
Tang
and
J. P.
Toennies
,
J. Chem. Phys.
80
,
3726
(
1984
).
45.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
46.
S.
Grimme
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
211
(
2011
).
47.
F. O.
Kannemann
and
A. D.
Becke
,
J. Chem. Theory Comput.
6
,
1081
(
2010
).
48.
S. N.
Steinmann
,
J. Chem. Theory Comput.
5
,
2950
(
2009
).
49.
S. N.
Steinmann
and
C.
Corminboeuf
,
J. Chem. Theory Comput.
6
,
1990
(
2010
).
50.
V. N.
Staroverov
,
G. E.
Scuceria
,
J.
Tao
, and
J. P.
Perdew
,
J. Chem. Phys.
119
,
12129
(
2003
).
51.
A.
Karton
,
A.
Tarnopolsky
,
J. F.
Lamere
,
G. C.
Schatz
, and
J. M. L.
Martin
,
J. Phys. Chem. A.
112
,
12868
(
2008
).
52.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. A.
109
,
5656
(
2005
).
53.
S.
Kozuch
,
D.
Gruzman
, and
J. M. L.
Martin
,
J. Phys. Chem. C.
114
,
20801
(
2010
).
54.
L.
Goerigk
and
S.
Grimme
,
Phys. Chem. Chem. Phys.
13
,
6670
(
2011
).
55.
A.
Koide
,
J. Phys. B
9
,
3173
(
1976
).
56.
D. D.
Richardson
,
J. Phys. A
8
,
1828
(
1975
).
57.
J.
Mahanty
and
B. W.
Ninham
,
J. Chem. Soc., Faraday Trans. 2
71
,
119
(
1975
).
58.
A.
Dalgarno
and
W. D.
Davison
,
Adv. At. Mol. Phys.
2
,
1
(
1966
).
59.
A.
Dalgarno
,
Adv. Chem. Phys.
12
,
143
(
1967
).
60.
J.
Řezáč
,
K.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
2427
(
2011
).
61.
P.
Kaelo
and
M. M.
Ali
,
J. Optim. Theory Appl.
130
,
253
(
2006
).
62.
M. J. D.
Powell
, “
The BOBYQA algorithm for bound constrained optimization without derivatives
,”
Technical Report DAMTP 2009/NA06
(
Department of Applied Mathematics and Theoretical Physics, Cambridge University
,
2009
).
63.
S. G.
Johnson
, The NLopt nonlinear-optimization package, 2010, http://ab-initio.mit.edu/nlopt.
64.
J.
Řezáč
,
K.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
2427
2438
(
2011
).
65.
M.
Korth
and
S.
Grimme
,
J. Chem. Theory Comput.
5
,
993
(
2009
).
66.
A.
Karton
,
A.
Tarnopolsky
,
J. F.
Lamère
,
G. C.
Schatz
, and
J. M. L.
Martin
,
J. Phys. Chem. A
112
,
12868
(
2008
).
67.
E. R.
Johnson
,
P.
Mori-Snchez
,
A. J.
Cohen
, and
W.
Yang
,
J. Chem. Phys.
129
,
204112
(
2008
).
68.
R.
Huenerbein
,
B.
Schirmer
,
J.
Moellmann
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
12
,
6940
(
2010
).
69.
S.
Grimme
,
M.
Steinmetz
, and
M.
Korth
,
J. Org. Chem.
72
,
2118
(
2007
).
70.
D.
Reha
,
H.
Valdes
,
J.
Vondrasek
, and
P.
Hobza
,
Chem. Eur. J.
11
,
6803
6817
(
2005
).
71.
P.
Jurecka
,
P.
Cerný
,
P.
Hobza
, and
H.
Valdes
,
J. Phys. Chem. A
111
,
1146
1154
(
2007
).
72.
T.
Risthaus
and
S.
Grimme
,
J. Chem. Theory Comput.
9
,
1580
(
2013
).
73.
Y.
Shao
,
L. F.
Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
, Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C.
Yeh Lin
,
T.
Van Voorhis
,
S.
Hung Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y.
Min Rhee
,
J.
Ritchie
,
E.
Rosta
,
C.
David Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H.
Lee Woodcock
III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
III
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
74.
S.
Geman
,
E.
Bienenstock
, and
R.
Doursat
,
Neural Comput.
4
(
1992
).
75.
C. D.
Sherrill
,
T.
Takatani
, and
E. G.
Hohenstein
,
J. Phys. Chem. A
113
,
10146
(
2009
).
76.
L.
Goerigk
,
H.
Kruse
, and
S.
Grimme
,
ChemPhysChem
12
,
3421
3433
(
2011
).

Supplementary Material

You do not currently have access to this content.