Owing to its peculiar electronic properties, molybdenum disulfide (MoS2) has been the subject of a growing number of studies in the recent years. In applications, this material and other transition metal dichalcogenides (TMDs) may have to interact with a liquid or polymer phase as well as solutions of biomolecules. It is therefore of primary importance to understand the wetting and adhesion properties of TMDs. Starting from existing models, we derive Lennard-Jones parameters for the interaction between water and the basal plane of MoS2 that are consistent with recent wetting experiments. Molecular dynamics simulations indicate that a stack of only two MoS2 monolayers is necessary to capture the wetting behavior of bulk MoS2. It is found that the Coulomb interaction between water and monolayer and bilayer MoS2 plays no role in the related interfacial thermodynamics. Calculations with the optimized parameters show that the depth of the well of the interaction potential between water and bulk MoS2 is of the order of 8.2 kJ/mol. Such a value is comparable with what was found for graphite and consistent with the fact that the wetting angles of water on graphite and MoS2 are almost equal. The derivation of the force-field parameters is performed using a methodology which, contrary to previous studies, makes a consistent use of droplet calculations. The results of our work should find application in further simulation studies on the wetting behavior of TMDs and other dispersive materials.

1.
P.
Miró
,
M.
Audiffred
, and
T.
Heine
,
Chem. Soc. Rev.
43
(
18
),
6537
6554
(
2014
).
2.
A. L.
Elias
,
N.
Perea-López
,
A.
Castro-Beltrán
,
A.
Berkdemir
,
R. T.
Lv
,
S. M.
Feng
,
A. D.
Long
,
T.
Hayashi
,
Y. A.
Kim
,
M.
Endo
,
H. R.
Gutierrez
,
N. R.
Pradhan
,
L.
Balicas
,
T. E. M.
Houk
,
F.
López-Urias
,
H.
Terrones
, and
M.
Terrones
,
ACS Nano
7
(
6
),
5235
5242
(
2013
).
3.
J.
Kim
,
S.
Kwon
,
D.-H.
Cho
,
B.
Kang
,
H.
Kwon
,
Y.
Kim
,
S. O.
Park
,
G. Y.
Jung
,
E.
Shin
,
W.-G.
Kim
,
H.
Lee
,
G. H.
Ryu
,
M.
Choi
,
T. H.
Kim
,
J.
Oh
,
S.
Park
,
S. K.
Kwak
,
S. W.
Yoon
,
D.
Byun
,
Z.
Lee
, and
C.
Lee
,
Nat. Commun.
6
,
8294
(
2015
).
4.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
,
Nat. Nanotechnol.
7
(
11
),
699
712
(
2012
).
5.
K. Q.
Zhou
,
J. J.
Liu
,
P. Y.
Wen
,
Y.
Hu
, and
Z.
Gui
,
Appl. Surf. Sci.
316
,
237
244
(
2014
).
6.
M.
Heiranian
,
A. B.
Farimani
, and
N. R.
Aluru
,
Nat. Commun.
6
,
8616
(
2015
).
7.
W. F.
Li
,
Y. M.
Yang
,
J. K.
Weber
,
G.
Zhang
, and
R. H.
Zhou
,
ACS Nano
10
(
2
),
1829
1835
(
2016
).
8.
Z. L.
Gu
,
W. F.
Li
,
L. B.
Hong
, and
R. H.
Zhou
,
J. Chem. Phys.
144
(
17
),
175103
(
2016
).
9.
J.
Lee
,
P.
Dak
,
Y.
Lee
,
H.
Park
,
W.
Choi
,
M. A.
Alam
, and
S.
Kim
,
Sci. Rep.
4
,
7352
(
2014
).
10.
A. B.
Farimani
,
K.
Min
, and
N. R.
Aluru
,
ACS Nano
8
(
8
),
7914
7922
(
2014
).
11.
A.
Marmur
,
Soft Matter
2
(
1
),
12
17
(
2006
).
12.
A. P. S.
Gaur
,
S.
Sahoo
,
M.
Ahmadi
,
S. P.
Dash
,
M. J. F.
Guinel
, and
R. S.
Katiyar
,
Nano Lett.
14
(
8
),
4314
4321
(
2014
).
13.
P. K.
Chow
,
E.
Singh
,
B. C.
Viana
,
J.
Gao
,
J.
Luo
,
J.
Li
,
Z.
Lin
,
A. L.
Elias
,
Y. F.
Shi
,
Z. K.
Wang
,
M.
Terrones
, and
N.
Koratkar
,
ACS Nano
9
(
3
),
3023
3031
(
2015
).
14.
A.
Kozbial
,
X.
Gong
,
H. T.
Liu
, and
L.
Li
,
Langmuir
31
(
30
),
8429
8435
(
2015
).
15.
Z.
Li
,
Y.
Wang
,
A.
Kozbial
,
G.
Shenoy
,
F.
Zhou
,
R.
McGinley
,
P.
Ireland
,
B.
Morganstein
,
A.
Kunkel
,
S. P.
Surwade
,
L.
Li
, and
H.
Liu
,
Nat. Mater.
12
(
10
),
925
931
(
2013
).
16.
A.
Kozbial
,
Z.
Li
,
J.
Sun
,
X.
Gong
,
F.
Zhou
,
Y.
Wang
,
H.
Xu
,
H.
Liu
, and
L.
Lei
,
Carbon
74
,
218
225
(
2014
).
17.
D.
Parobek
and
H.
Liu
,
2D Mater.
2
,
032001
(
2015
).
18.
M.
Annamalai
,
K.
Gopinadhan
,
S. A.
Han
,
S.
Saha
,
H. J.
Park
,
E. B.
Cho
,
B.
Kumar
,
A.
Patra
,
S. W.
Kim
, and
T.
Venkatesan
,
Nanoscale
8
(
10
),
5764
5770
(
2016
).
19.
Q.
Yue
,
Z. Z.
Shao
,
S. L.
Chang
, and
J. B.
Li
,
Nanoscale Res. Lett.
8
,
425
(
2013
).
20.
J.
Sun
,
N.
Lin
,
H.
Ren
,
C.
Tang
,
L. T.
Yang
, and
X.
Zhao
,
RSC Adv.
6
(
21
),
17494
17503
(
2016
).
21.
C. J.
Zhou
,
W. H.
Yang
, and
H. L.
Zhu
,
J. Chem. Phys.
142
(
21
),
214704
(
2015
).
22.
J.
Ma
,
A.
Michaelides
,
D.
Alfè
,
L.
Schimka
,
G.
Kresse
, and
E. G.
Wang
,
Phys. Rev. B
84
(
3
),
033402
(
2011
).
23.
Y.
Ling
,
Z. L.
Gu
,
S. G.
Kang
,
J. D.
Luo
, and
R. H.
Zhou
,
J. Phys. Chem. C
120
(
12
),
6796
6803
(
2016
).
24.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
(
2
),
926
935
(
1983
).
25.
V.
Varshney
,
S. S.
Patnaik
,
C.
Muratore
,
A. K.
Roy
,
A. A.
Voevodin
, and
B. L.
Farmer
,
Comput. Mater. Sci.
48
(
1
),
101
108
(
2010
).
26.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
(
24
),
6269
6271
(
1987
).
27.
T.
Liang
,
S. R.
Phillpot
, and
S. B.
Sinnott
,
Phys. Rev. B
79
(
24
),
245110
(
2009
).
28.
T.
Liang
,
S. R.
Phillpot
, and
S. B.
Sinnott
,
Phys. Rev. B
85
,
199903E
(
2012
).
29.
B. Q.
Luan
and
R. H.
Zhou
,
Appl. Phys. Lett.
108
(
13
),
131601
(
2016
).
30.
C.
Vega
and
E.
de Miguel
,
J. Chem. Phys.
126
(
15
),
154707
(
2007
).
31.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
(
23
),
234505
(
2005
).
32.
J. L. F.
Abascal
,
E.
Sanz
,
R. G.
Fernandez
, and
C.
Vega
,
J. Chem. Phys.
122
(
23
),
234511
(
2005
).
33.
J. A.
Stewart
and
D. E.
Spearot
,
Modell. Simul. Mater. Sci. Eng.
21
(
4
),
045003
(
2013
).
34.
A.
Govind Rajan
,
V.
Sresht
,
A. A. H.
Pádua
,
M. S.
Strano
, and
D.
Blankschtein
, “
Dominance of dispersion interactions and entropy over electrostatics in determining the wettability and friction of two-dimensional MoS2 surfaces
,”
ACS Nano
(in press).
35.
S.
Plimpton
,
J. Comput. Phys.
117
(
1
),
1
19
(
1995
).
36.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
Dinola
, and
J. R.
Haak
,
J. Chem. Phys.
81
(
8
),
3684
3690
(
1984
).
37.
L.
Martinez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martinez
,
J. Comput. Chem.
30
(
13
),
2157
2164
(
2009
).
38.
F.
Leroy
,
S. Y.
Liu
, and
J. G.
Zhang
,
J. Phys. Chem. C
119
(
51
),
28470
28481
(
2015
).
39.
F.
Leroy
and
F.
Müller-Plathe
,
Langmuir
31
(
30
),
8335
8345
(
2015
).
40.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation. From Algortihms to Aplications
(
Academic Press
,
San Diego
,
2002
).
41.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 2nd ed. (
Academic Press
,
1991
).
42.
T.
Werder
,
J. H.
Walther
,
R. L.
Jaffe
,
T.
Halicioglu
, and
P.
Koumoutsakos
,
J. Phys. Chem. B
107
(
6
),
1345
1352
(
2003
).
43.
F.
Taherian
,
V.
Marcon
,
N. F. A.
van der Vegt
, and
F.
Leroy
,
Langmuir
29
(
5
),
1457
1465
(
2013
).
44.
F.
Taherian
,
F.
Leroy
, and
N. F. A.
van der Vegt
,
Langmuir
29
(
31
),
9807
9813
(
2013
).
45.
N. R.
Pallas
and
Y.
Harrison
,
Colloids Surf.
43
(
2-4
),
169
194
(
1990
).
46.
A. C.
Fogarty
,
E.
Duboué-Dijon
,
F.
Sterpone
,
J. T.
Hynes
, and
D.
Laage
,
Chem. Soc. Rev.
42
(
13
),
5672
5683
(
2013
).
47.
G.
Tocci
,
L.
Joly
, and
A.
Michaelides
,
Nano Lett.
14
(
12
),
6872
6877
(
2014
).
48.
Y. B.
Wu
,
L. K.
Wagner
, and
N. R.
Aluru
,
J. Chem. Phys.
144
(
16
),
164118
(
2016
).

Supplementary Material

You do not currently have access to this content.