Studying the changed water dynamics in the hydration layers of biomolecules is an important step towards fuller understanding of their function and mechanisms, but has shown to be quite difficult. The measurement of the time-dependent Stokes shift of a chromophore attached to the biomolecule is a promising method to achieve this goal, as published in Sajadi et al. [J. Phys. Chem. Lett., 5, 1845 (2014).] where trehalose was used as biomolecule, 1-methyl-6-oxyquinolinium betaine as chromophore, and water as solvent. An overall retardation of solvent molecules is then obtained by comparison of the linked system to the same system without trehalose, but contributions from different subgroups of solvent molecules, for example, molecules close to or far from trehalose, are unknown. The difficulty arising from these unknown contributions of retarded and possibly unretarded solvent molecules is overcome in this work by conducting computer simulations on this system and decomposing the overall signal into the contributions from various molecules at different locations. We performed non-equilibrium molecular dynamics simulation using a polarizable water model and a non-polarizable solute model and could reproduce the experimental time-dependent Stokes shift accurately for the linked trehalose-oxyquinolinium and the pure oxyquinolinium over a wide temperature range, indicating the correctness of our employed models. Decomposition of the shift into contributions from different solvent subgroups showed that the amplitude of the measured shift is made up only half by the desired retarded solvent molecules in the hydration layer, but to another half by unretarded bulk water, so that measured relaxation times of the overall Stokes shift are only a lower boundary for the true relaxation times in the hydration layer of trehalose. As a side effect, the results on the effect of trehalose on solvation dynamics contribute to the long standing debate on the range of influence of trehalose on water dynamics, the number of retarded solvent molecules, and the observed retardation factor when compared to bulk water.

1.
K. A. C.
Madin
and
J. H.
Crowe
,
J. Exp. Zool.
193
,
335
(
1975
).
2.
C. A.
Behm
,
Int. J. Parasitol.
27
,
215
(
1997
).
3.
Y. M.
Newman
,
S. G.
Ring
, and
C.
Colaco
,
Biotechnol. Genet. Eng. Rev.
11
,
263
(
1993
).
4.
L.
Sømme
,
Eur. J. Entomol.
93
,
349
(
1996
), ISSN 1210-5759.
5.
K. B.
Storey
and
J. M.
Storey
,
Sci. Am.
263
,
92
(
1990
).
6.
G.
Xie
and
S. N.
Timasheff
,
Biophys. Chem.
64
,
25
(
1997
).
7.
P.
Carninci
,
Y.
Nishiyama
,
A.
Westover
,
M.
Itoh
,
S.
Nagaoka
,
N.
Sasaki
,
Y.
Okazaki
,
M.
Muramatsu
, and
Y.
Hayashizaki
,
Proc. Natl. Acad. Sci. U. S. A.
95
,
520
(
1998
).
8.
M.
Sola-Penna
and
J. R.
Meyer-Fernandes
,
Arch. Biochem. Biophys.
360
,
10
(
1998
).
9.
J. K.
Kaushik
and
R.
Bhat
,
J. Biol. Chem.
278
,
26458
(
2003
).
10.
D. P.
Miller
,
J. J.
de Pablo
, and
H.
Corti
,
Pharm. Res.
14
,
578
(
1997
).
11.
M.
Heyden
,
E.
Bründemann
,
U.
Heugen
,
G.
Niehues
,
D. M.
Leitner
, and
M.
Havenith
,
J. Am. Chem. Soc.
130
,
5773
(
2008
).
12.
L. R.
Winther
,
J.
Qvist
, and
B.
Halle
,
J. Phys. Chem. B
116
,
9196
(
2012
).
13.
J. H.
Crowe
,
Am. Nat.
105
,
563
(
1971
).
14.
C.
Olsson
,
H.
Jansson
, and
J.
Swenson
,
J. Phys. Chem. B
120
,
4723
(
2016
).
15.
A.
Roy
,
R.
Dutta
,
N.
Kundu
,
D.
Banik
, and
N.
Sarkar
,
Langmuir
32
,
5124
(
2016
).
16.
S.
Magazù
,
P.
Migliardo
,
A. M.
Musolino
, and
M. T.
Sciortino
,
J. Phys. Chem. B
101
,
2348
(
1997
).
17.
D.
Corradini
,
E. G.
Strekalova
,
H. E.
Stanley
, and
P.
Gallo
,
Sci. Rep.
3
,
1218
(
2013
).
18.
N.
Shukla
,
E.
Pomarico
,
L.
Chen
,
M.
Chergui
, and
C. M.
Othon
,
J. Phys. Chem. B
120
,
9477
(
2016
).
19.
M.
Sajadi
,
F.
Berndt
,
C.
Richter
,
M.
Gerecke
,
R.
Mahrwald
, and
N. P.
Ernsting
,
J. Phys. Chem. Lett.
5
,
1845
(
2014
).
20.
M.
Maroncelli
and
G. R.
Fleming
,
J. Chem. Phys.
86
,
6221
(
1987
).
21.
S.
Vajda
,
R.
Jimenez
,
S. J.
Rosenthal
,
V.
Fidler
,
G. R.
Fleming
, and
E. W.
Castner
, Jr.
,
J. Chem. Soc., Faraday Trans.
91
,
867
(
1995
).
22.
M.
Maroncelli
,
J. Mol. Liq.
57
,
1
(
1993
).
23.
E. L.
Mertz
,
V. A.
Tikhomirov
, and
L. I.
Krishtalik
,
J. Phys. Chem.
101
,
3433
(
1997
).
24.
L.
Nilsson
and
B.
Halle
,
PNAS
102
,
13867
(
2005
).
25.
G.
Guang-Yu
,
L.
Yu
,
W.
Wei
,
W.
Shu-Feng
,
D.
Zhong
, and
G.
Qi-Huang
,
Chin. Phys. B
24
,
018201
(
2015
).
26.
N.
Pal
,
H.
Shweta
,
M. K.
Singh
,
S. D.
Verma
, and
S.
Sen
,
J. Phys. Chem. Lett.
6
,
1754
(
2015
).
27.
R.
Yadav
,
B.
Sengupta
, and
P.
Sen
,
Biophys. Chem.
211
,
59
(
2016
).
28.
S.
Sen
,
D.
Andreatta
,
S. Y.
Ponomarev
,
D. L.
Beveridge
, and
M. A.
Berg
,
J. Am. Chem. Soc.
131
,
1724
(
2009
).
29.
M.
Sajadi
,
Y.
Ajaj
,
I.
Ioffe
,
H.
Weingärtner
, and
N. P.
Ernsting
,
Angew. Chem., Int. Ed.
49
,
454
(
2010
).
30.
A. V.
Verde
and
R. K.
Campen
,
J. Phys. Chem. B
115
,
7069
(
2011
).
31.
G.
Lamoureux
and
B.
Roux
,
J. Chem. Phys.
119
,
3025
(
2003
).
32.
E.
Heid
,
S.
Harringer
, and
C.
Schröder
, “
The small impact of various partial charge distributions in ground and excited state on the computational Stokes shift of 1-methyl-6-oxyquinolinium betaine in diverse water models
,”
J. Chem. Phys.
(to be published).
33.
J.-D.
Chai
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
10
,
6615
(
2008
).
34.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
35.
K.
Vanommeslaeghe
and
A. D.
MacKerell
, Jr.
,
J. Chem. Inf. Model.
52
,
3144
(
2012
).
36.
K.
Vanommeslaeghe
,
E. P.
Raman
, and
A. D.
MacKerell
, Jr.
,
J. Chem. Inf. Model.
52
,
3155
(
2012
).
37.
K.
Vanommeslaeghe
,
E.
Hatcher
,
C.
Acharya
,
S.
Kundu
,
S.
Zhong
,
J.
Shim
,
E.
Darian
,
O.
Guvench
,
P.
Lopes
,
I.
Vorobyov
 et al,
J. Comput. Chem.
31
,
671
(
2010
).
38.
B. R.
Brooks
,
C. L.
Brooks
III
,
A. D.
MacKerell
, Jr.
,
L.
Nilsson
,
R. J.
Petrella
,
B.
Roux
,
Y.
Won
,
G.
Archontis
,
C.
Bartels
,
S.
Boresch
 et al,
J. Comput. Chem.
30
,
1545
(
2009
).
39.
G.
Neumayr
,
C.
Schröder
, and
O.
Steinhauser
,
J. Chem. Phys.
131
,
174509
(
2009
).
40.
A.
Okabe
,
Spatial Tesselations: Concepts and Applications of Voronoi Diagrams
(
Wiley
,
New York
,
2000
).
41.
N.
Michaud-Agrawal
,
E. J.
Denning
,
T. B.
Woolf
, and
O.
Beckstein
,
J. Comput. Chem.
32
,
2319
(
2011
).
42.
A.
Lerbet
,
F.
Affouard
,
P.
Bordat
,
A.
Hédoux
,
Y.
Guinet
, and
M.
Descamps
,
J. Non-Cryst. Solids
357
,
695
(
2011
).
43.
L.
Lupi
,
L.
Comez
,
M.
Paolantoni
,
S.
Perticaroli
,
P.
Sassi
,
A.
Morresi
,
B. M.
Ladanyi
, and
D.
Fioretto
,
J. Phys. Chem. B
116
,
14760
(
2012
).
44.
M.
Holz
,
S. R.
Heil
, and
A.
Sacco
,
Phys. Chem. Chem. Phys.
2
,
4740
(
2000
).
45.
B.
Bagchi
and
B.
Jana
,
Chem. Soc. Rev.
39
,
1936
(
2010
).
46.
R.
Jimenez
,
G. R.
Fleming
,
P. V.
Kumar
, and
M.
Maroncelli
,
Nature
369
,
471
(
1994
).
47.
D.
Roy
and
M.
Maroncelli
,
J. Phys. Chem. B
116
,
5951
(
2012
).
48.
P. K.
Chowdhury
,
M.
Halder
,
L.
Sanders
,
T.
Calhoun
,
J. L.
Anderson
,
D. W.
Armstrong
,
X.
Song
, and
J. W.
Petrich
,
J. Phys. Chem. B
108
,
10245
(
2004
).
49.
R.
Karmakar
and
A.
Samanta
,
J. Phys. Chem. A
106
,
4447
(
2002
).
50.
R.
Karmakar
and
A.
Samanta
,
J. Phys. Chem. A
107
,
7340
(
2003
).
51.
C. C. M.
Groot
and
H. J.
Baker
,
Phys. Chem. Chem. Phys.
17
,
9440
(
2015
).
52.
K.
Shiraga
,
T.
Suzuki
,
N.
Kondo
,
J. D.
Baerdemaeker
, and
Y.
Ogawa
,
Carbohydr. Res.
406
,
46
(
2015
).
53.
S. E.
Pagnotta
,
S. E.
McLain
,
A. K.
Soper
,
F.
Bruni
, and
M. A.
Ricci
,
J. Phys. Chem.
114
,
4904
(
2010
).
You do not currently have access to this content.