The influence of the partial charge distribution obtained from quantum mechanics of the solute 1-methyl-6-oxyquinolinium betaine in the ground- and first excited state on the time-dependent Stokes shift is studied via molecular dynamics computer simulation. Furthermore, the effect of the employed solvent model — here the non-polarizable SPC, TIP4P and TIP4P/2005 and the polarizable SWM4 water model — on the solvation dynamics of the system is investigated. The use of different functionals and calculation methods influences the partial charge distribution and the magnitude of the dipole moment of the solute, but not the orientation of the dipole moment. Simulations based on the calculated charge distributions show nearly the same relaxation behavior. Approximating the whole solute molecule by a dipole results in the same relaxation behavior, but lower solvation energies, indicating that the time scale of the Stokes shift does not depend on peculiarities of the solute. However, the SPC and TIP4P water models show too fast dynamics which can be ascribed to a too large diffusion coefficient and too low viscosity. The calculated diffusion coefficient and viscosity for the SWM4 and TIP4P/2005 models coincide well with experimental values and the corresponding relaxation behavior is comparable to experimental values. Furthermore we found that for a quantitative description of the Stokes shift of the applied system at least two solvation shells around the solute have to be taken into account.

1.
R.
Jimenez
,
G. R.
Fleming
,
P. V.
Kumar
, and
M.
Maroncelli
,
Nature
369
,
471
(
1994
).
2.
N.
Nandi
,
K.
Bhattacharyya
, and
B.
Bagchi
,
Chem. Rev.
100
,
2013
(
2000
).
3.
S.
Sen
,
D.
Andreatta
,
S. Y.
Ponomarev
,
D. L.
Beveridge
, and
M. A.
Berg
,
J. Am. Chem. Soc.
131
,
1724
(
2009
).
4.
M.
Sajadi
,
F.
Berndt
,
C.
Richter
,
M.
Gerecke
,
R.
Mahrwald
, and
N. P.
Ernsting
,
J. Phys. Chem. Lett.
5
,
1845
(
2014
).
5.
M.
Maroncelli
,
J. Mol. Liquids
57
,
1
(
1993
).
6.
D.
Roy
and
M.
Maroncelli
,
J. Phys. Chem. B
116
,
5951
(
2012
).
7.
P. K.
Chowdhury
,
M.
Halder
,
L.
Sanders
,
T.
Calhoun
,
J. L.
Anderson
,
D. W.
Armstrong
,
X.
Song
, and
J. W.
Petrich
,
J. Phys. Chem. B
108
,
10245
(
2004
).
8.
R.
Karmakar
and
A.
Samanta
,
J. Phys. Chem. A
106
,
4447
(
2002
).
9.
R.
Karmakar
and
A.
Samanta
,
J. Phys. Chem. A
107
,
7340
(
2003
).
10.
M.
Sajadi
,
M.
Weinberger
,
H.-A.
Wagenknecht
, and
N. P.
Ernsting
,
Phys. Chem. Chem. Phys.
13
,
17768
(
2011
).
11.
J. A.
Ingram
,
R. S.
Moog
,
N.
Ito
,
R.
Biswas
, and
M.
Maroncelli
,
J. Phys. Chem. B
107
,
5926
(
2003
).
12.
S.
Arzhantsev
,
H.
Jin
,
G. A.
Baker
, and
M.
Maroncelli
,
J. Phys. Chem. B
111
,
4978
(
2007
).
13.
S.
Daschakraborty
and
R.
Biswas
,
J. Chem. Phys.
139
,
164503
(
2013
).
14.
M. L.
Horng
,
J. A.
Gardecki
,
A.
Papazan
, and
M.
Maroncelli
,
J. Phys. Chem.
99
,
17311
(
1995
).
15.
B. M.
Ladanyi
and
M.
Maroncelli
,
J. Chem. Phys.
109
,
3204
(
1998
).
16.
J. L. P.
Lustres
,
S. A.
Kovalenko
,
M.
Mosquera
,
T.
Senyushkina
,
W.
Flasche
, and
N. P.
Ernsting
,
Angew. Chem., Int. Ed.
44
,
5635
(
2005
).
17.
C.
Allolio
and
D.
Sebastiani
,
Phys. Chem. Chem. Phys.
13
,
16395
(
2011
).
18.
C.
Allolio
,
M.
Sajadi
,
N. P.
Ernsting
, and
D.
Sebastiani
,
Angew. Chem., Int. Ed.
52
,
1813
(
2013
).
19.
G.
Neumayr
,
C.
Schröder
, and
O.
Steinhauser
,
J. Chem. Phys.
131
,
174509
(
2009
).
20.
M.
Schmollngruber
,
C.
Schröder
, and
O.
Steinhauser
,
J. Chem. Phys.
138
,
204504
(
2013
).
21.
O.
Borodin
,
J. Phys. Chem. B
113
,
11463
(
2009
).
22.
C.
Schröder
,
Phys. Chem. Chem. Phys.
14
,
3089
(
2012
).
23.
B.
Hess
,
J. Chem. Phys.
116
,
209
(
2002
).
24.
G.
Lamoureux
,
E.
Harder
,
I. V.
Vorobyov
,
B.
Roux
, and
A. D.
MacKerell
, Jr.
,
Chem. Phys. Lett.
418
,
245
(
2006
).
25.
G.
Lamoureux
,
A. D.
MacKerell
, and
B.
Roux
,
J. Chem. Phys.
119
,
5185
(
2003
).
26.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
, and
J.
Hermans
,
Intermolecular Forces
(
Reidel
,
Dordrecht, The Netherlands
,
1981
).
27.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
28.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
29.
C. M.
Breneman
and
K. B.
Wiberg
,
J. Comput. Chem.
11
,
361
(
1990
).
30.
F. L.
Hirshfeld
,
Theor. Chim. Acta
44
,
129
(
1977
).
31.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
 et al, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.
32.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
33.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
34.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
35.
J.-D.
Chai
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
10
,
6615
(
2008
).
36.
D.
Jacquemin
,
V.
Wathelet
,
E. A.
Perpète
, and
C.
Adamo
,
J. Chem. Theory Comput.
5
,
2420
(
2009
).
37.
A.
Dreuw
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
126
,
4007
(
2004
).
38.
L.
Bernasconi
,
M.
Sprik
, and
J.
Hutter
,
Chem. Phys. Lett.
394
,
141
(
2004
).
39.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
40.
B. R.
Brooks
,
C. L.
Brooks
III
,
A. D.
MacKerell
, Jr.
,
L.
Nilsson
,
R. J.
Petrella
,
B.
Roux
,
Y.
Won
,
G.
Archontis
,
C.
Bartels
,
S.
Boresch
 et al,
J. Comput. Chem.
30
,
1545
(
2009
).
41.
K.
Vanommeslaeghe
and
A. D.
MacKerell
, Jr.
,
J. Chem. Inf. Model.
52
,
3144
(
2012
).
42.
K.
Vanommeslaeghe
,
E. P.
Raman
, and
A. D.
MacKerell
, Jr.
,
J. Chem. Inf. Model.
52
,
3155
(
2012
).
43.
K.
Vanommeslaeghe
,
E.
Hatcher
,
C.
Acharya
,
S.
Kundu
,
S.
Zhong
,
J.
Shim
,
E.
Darian
,
O.
Guvench
,
P.
Lopes
,
I.
Vorobyov
 et al,
J. Comput. Chem.
31
,
671
(
2010
).
44.
L.
Martínez
,
R.
Andrade
,
G.
Birgin
, and
J. M.
Martínez
,
J. Comput. Chem.
30
,
2157
(
2009
).
45.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
46.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
47.
N.
Michaud-Agrawal
,
E. J.
Denning
,
T. B.
Woolf
, and
O.
Beckstein
,
J. Comput. Chem.
32
,
2319
(
2011
).
48.
J. L.
Pérez
,
F.
Rodriguez-Prieto
,
M.
Mosquera
,
T. A.
Senyushkina
,
N. P.
Ernsting
, and
S. A.
Kovalenko
,
J. Am. Chem. Soc.
129
,
5408
(
2007
).
49.
C. J. F.
Böttcher
and
P.
Bordewijk
,
Theory of Electric Polarization
(
Elsevier
,
Amsterdam
,
1978
), Vol.
1
.
50.
A.
Okabe
,
Spatial Tesselations: Concepts and Applications of Voronoi Diagrams
(
Wiley
,
New York
,
2000
).
51.
S.
Vajda
,
R.
Jimenez
,
S. J.
Rosenthal
,
V.
Fidler
,
G. R.
Fleming
, and
E. W.
Castner
, Jr.
,
J. Chem. Soc., Faraday Trans.
91
,
867
(
1995
).
52.
H.
Bürsing
,
S.
Kundu
, and
P.
Vöhringer
,
J. Phys. Chem. B
107
,
2404
(
2003
).
53.
S.
Mukherjee
,
K.
Sahu
,
D.
Roy
,
S. K.
Mondal
, and
K.
Bhattacharyya
,
Chem. Phys. Lett.
384
,
128
(
2004
).
54.
X.-X.
Zhang
,
J.
Breffke
,
N. P.
Ernsting
, and
M.
Maroncelli
,
Phys. Chem. Chem. Phys.
17
,
12949
(
2015
).
55.
H.
Jin
,
G. A.
Baker
,
S.
Arzhantsev
,
J.
Dong
, and
M.
Maroncelli
,
J. Phys. Chem. B
111
,
7291
(
2007
).
56.
A.
Petrone
,
G.
Donati
,
P.
Caruso
, and
N.
Rega
,
J. Am. Chem. Soc.
136
,
14866
(
2014
).
57.
M.
Holz
,
S. R.
Heil
, and
A.
Sacco
,
Phys. Chem. Chem. Phys.
2
,
4740
(
2000
).
58.
B.
Bagchi
,
D. W.
Oxtoby
, and
G. R.
Fleming
,
Chem. Phys.
86
,
257
(
1983
).
59.
C.-P.
Hsu
,
X.
Song
, and
R. A.
Marcus
,
J. Phys. Chem. B
101
,
2546
(
1997
).
60.
M.
Sega
and
C.
Schröder
,
J. Phys. Chem. A
119
,
1539
(
2015
).
61.
D.
Braun
,
S.
Boresch
, and
O.
Steinhauser
,
J. Chem. Phys.
140
,
064107
(
2014
).
62.
P.
Ahlström
,
A.
Wallqvist
,
S.
Engström
, and
B.
Jönsson
,
Mol. Phys.
68
,
563
(
1989
).
63.
C. J. F.
Böttcher
and
P.
Bordewijk
,
Theory of Electric Polarization
(
Elsevier
,
Amsterdam
,
1978
), Vol.
2
.
64.
C.
Vega
,
J. L. F.
Abascal
,
M. M.
Conde
, and
J. L.
Aragones
,
Faraday Discuss.
141
,
251
(
2009
).
65.
M. A.
González
and
J. L. F.
Abascal
,
J. Chem. Phys.
132
,
096101
(
2010
).
66.
X.-X.
Zhang
,
C.
Schröder
, and
N. P.
Ernsting
,
J. Chem. Phys.
138
,
111102
(
2013
).

Supplementary Material

You do not currently have access to this content.