We report experimental vibrational spectra of small neutral niobium carbide clusters in the 350−850 cm−1 spectral range. Clusters were first irradiated by IR light and subsequently probed using UV light with photon energies just below the ionization threshold. Upon resonance with an IR vibrational mode, the number of cluster ions increases, allowing to record a vibrational spectrum. In complementary density functional theory calculations, we have simulated the IR spectra for several low-energy isomers. We were able to assign the spectra experimentally obtained for each cluster size to a specific geometric structure based on the match with the computed spectra. The number of the cluster sizes investigated here allows to follow the evolution of the geometric structure of the niobium and carbon components of clusters separately. For Nb6Cm (m = 4, 5, 6), we observe the emergence of the cubic crystal structures similar to the bulk.

1.
B. C.
Guo
,
K. P.
Kerns
, and
A. W.
Castleman
, Jr.
, “
Reactivities of titanium metallo-carbohedrene Ti8C12+ at thermal energies
,”
J. Am. Chem. Soc.
115
(
16
),
7415
(
1993
).
2.
L.-S.
Wang
and
H.
Cheng
, “
Growth pathways of metallocarbohedrenes: Cagelike or cubic?
,”
Phys. Rev. Lett.
78
,
2983
(
1997
).
3.
N.
Blessing
,
S.
Burkart
, and
G.
Ganteför
, “
Production of large metallocarbohedrene clusters using a pulsed arc cluster ion source
,”
Eur. Phys. J. D
17
,
37
41
(
2001
).
4.
P.
Liu
,
J. A.
Rodriguez
,
H.
Hou
, and
J. T.
Muckerman
, “
Chemical reactivity of metcar Ti8C12, nanocrystal Ti14C13 and a bulk TiC(001) surface: A density functional study
,”
J. Chem. Phys.
78
,
7737
(
2003
).
5.
P.
Liu
,
J. A.
Rodriguez
, and
J. T.
Muckerman
, “
Desulfurization of SO2 and thiophene on surfaces and nanoparticles of molybdenum carbide: Unexpected ligand and steric effects
,”
J. Phys. Chem. B
108
,
15662
(
2004
).
6.
Y.
Zhao
,
A. C.
Dillon
,
Y.-H.
Kim
,
M. J.
Heben
, and
S.
Zhang
, “
Self-catalyzed hydrogenation and dihydrogen adsorption on titanium carbide nanoparticles
,”
Chem. Phys. Lett.
425
,
273
(
2006
).
7.
N.
Fukushima
,
K.
Miyajima
, and
F.
Mafuné
, “
Ionization energies of niobium carbide clusters NbnCm (n = 3-10, m = 0-7)
,”
J. Phys. Chem. A
113
,
2309
2315
(
2009
).
8.
V.
Dryza
,
M. A.
Addicoat
,
J. R.
Gascooke
,
M. A.
Buntine
, and
G. F.
Metha
, “
Threshold photoionization and density functional theory studies of the niobium carbide clusters Nb3Cn (n = 1-4) and Nb4Cn, (n = 1-6)
,”
J. Phys. Chem. A
112
,
5582
5592
(
2008
).
9.
K.
Miyajima
,
M. A.
Sobhana
,
R. A.
Hardyb
,
G. F.
Methab
, and
F.
Mafuné
, “
Structural rearrangement in gas phase niobium carbide clusters, NbnC3 and NbnC6
,”
Chem. Phys. Lett.
634
,
261
265
(
2015
).
10.
B. C.
Guo
,
K. P.
Kerns
, and
A. W.
Castleman
, Jr.
, “
Ti8C12+− metallo-carbohedrenes: A new class of molecular clusters?
,”
Science
255
,
1411
(
1992
).
11.
B.
Guo
,
S.
Wei
,
J.
Purnell
,
S.
Buzza
, and
A. W.
Castleman
, Jr.
, “
Metallo-carbohedrenes [M8C12+ (M = V, Zr, Hf, and Ti)]: A class of stable molecular cluster ions
,”
Science
256
,
515
(
1992
).
12.
M.-M.
Rohmer
,
M.
Benard
,
C.
Henriet
,
C.
Bo
, and
J.-M.
Poblet
, “
Ab initio SCF and CI investigations on titanium-carbon clusters: Metallocarbohedrenes Ti8C12 and Fcc crystallites Ti14C14
,”
J. Am. Chem. Soc.
117
,
508
517
(
1995
).
13.
V.
Chernyy
,
R.
Logemann
,
J. M.
Bakker
, and
A.
Kirilyuk
, “
The repopulation of electronic states upon vibrational excitation of niobium carbide clusters
,”
J. Chem. Phys.
145
,
024313
(
2016
).
14.
H.
Harris
and
I.
Dance
, “
The geometric and electronic structure of niobium carbon clusters
,”
J. Phys. Chem. A
105
,
3340
3358
(
2001
).
15.
L.-S.
Wang
,
S.
Li
, and
H.
Wu
, “
Photoelectron spectroscopy and electronic structure of met-car Ti8C12
,”
J. Phys. Chem.
100
(
50
),
19211
19214
(
1996
).
16.
J. M.
Bakker
,
V. J. F.
Lapoutre
,
B.
Redlich
,
J.
Oomens
,
B. G.
Sartakov
,
A.
Fielicke
,
G.
von Helden
,
G.
Meijer
, and
A. F. G.
van der Meer
, “
Intensity-resolved IR multiple photon ionization and fragmentation of C60
,”
J. Chem. Phys.
132
,
1
9
(
2010
).
17.
W. J. C.
Menezes
and
M. B.
Knickelbein
, “
Photodissociation spectroscopy of NbnArm complexes
,”
J. Chem. Phys.
98
,
1856
(
1993
).
18.
S. F.
Cartier
,
B. D.
May
, and
A. W.
Castleman
, Jr.
, “
The delayed ionization and atomic ion emission of binary metal metallocarbohedrenes TixMyC12 (M = Zr, Nb; 0≥ y≤4; x + y = 8)
,”
J. Chem. Phys.
104
,
3423
(
1996
).
19.
C. S.
Yeh
,
Y. G.
Byun
,
S.
Afzaal
,
S. Z.
Kan
,
S.
Lee
,
B. S.
Freiser
, and
P. J.
Hay
, “
Experimental and theoretical studies on Nb4C40/+: Reactivity and structure of the smallest cubic niobium-carbon cluster
,”
J. Am. Chem. Soc.
117
,
4042
4048
(
1995
).
20.
V.
Dryza
,
J. R.
Gascooke
,
M. A.
Buntine
, and
G. F.
Metha
, “
Onset of carboncarbon bonding in the Nb5Cy (y =0 −6) clusters: A threshold photo-ionisation and density functional theory study
,”
Phys. Chem. Chem. Phys.
11
,
1060
1068
(
2009
).
21.
D.-S.
Yang
,
M. Z.
Zgierski
,
A.
Berces
,
P. A.
Hackett
,
P.-N.
Roy
,
A.
Martinez
,
J. T.
Carrington
,
D. R.
Salahub
,
R.
Fournier
,
T.
Pang
, and
C.
Chen
, “
Vibrational and geometric structures of Nb3C2 and Nb3C2+ from pulsed field ionization-zero electron kinetic energy photoelectron spectra and density functional calculations
,”
J. Chem. Phys.
105
,
10663
10671
(
1996
).
22.
D.
van Heijnsbergen
,
A.
Fielicke
,
G.
Meijer
, and
G.
von Helden
, “
Structure determination of gas-phase niobium and tantalum carbide nanocrystals via infrared spectroscopy
,”
Phys. Rev. Lett.
89
,
013401
(
2002
).
23.
D.
van Heijnsbergen
,
G.
von Helden
,
M.
Duncan
,
A.
van Roij
, and
G.
Meijer
, “
Vibrational spectroscopy of gas-phase metal-carbide clusters and nanocrystals
,”
Phys. Rev. Lett.
83
,
4983
4986
(
1999
).
24.
M.
Putter
,
G.
von Helden
, and
G.
Meijer
, “
Mass selective infrared spectroscopy using a free electron laser
,”
Chem. Phys. Lett.
258
,
118
122
(
1996
).
25.
A.
Fielicke
,
J. T.
Lyon
,
M.
Haertelt
,
G.
Meijer
,
P.
Claes
,
J.
de Haeck
, and
P.
Lievens
, “
Vibrational spectroscopy of neutral silicon clusters via far-IR-VUV two color ionization
,”
J. Chem. Phys.
131
,
171105
(
2009
).
26.
J.
Jalink
,
J. M.
Bakker
,
T.
Rasing
, and
A.
Kirilyuk
, “
Channeling vibrational energy to probe the electronic density of states in metal clusters
,”
J. Phys. Chem. Lett.
6
,
750
754
(
2015
).
27.
V. J. F.
Lapoutre
,
M.
Haertelt
,
G.
Meijer
,
A.
Fielicke
, and
J. M.
Bakker
, “
Communication: IR spectroscopy of neutral transition metal clusters through thermionic emission
,”
J. Chem. Phys.
113
,
121101
(
2013
).
28.
F.
Calvo
,
Y.
Li
,
D. M.
Kiawi
,
J. M.
Bakker
,
P.
Parneix
, and
E.
Janssens
, “
Nonlinear effects in infrared action spectroscopy: Experiment and kinetic modeling
,”
Phys. Chem. Chem. Phys.
17
,
25956
25967
(
2015
).
29.
D.
Oepts
,
A. F. G.
van der Meer
, and
P. W.
van Amersfoort
, “
The free-electron-laser user facility FELIX
,”
Infrared Phys. Technol.
36
,
297
308
(
1995
).
30.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
31.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
32.
G.
Kresse
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
33.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
34.
R. L.
Johnston
, “
Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries
,”
Dalton Trans.
2003
,
4193
.
35.
R.
Logemann
,
G. A.
de Wijs
,
M. I.
Katsnelson
, and
A.
Kirilyuk
, “
Geometric, electronic, and magnetic structure of FexOy+ clusters
,”
Phys. Rev. B
92
,
144427
(
2015
).
36.
V.
Dryza
, Ph.D. thesis,
The University of Adelaide
,
2008
.
37.
J. M.
Parnis
,
E.
Escobar-Cabrera
,
M. G. K.
Thompson
,
J. P.
Jacula
,
R. D.
Lafleur
,
A.
Guevara-Garca
,
A.
Martnez
, and
D. M.
Rayner
, “
Cluster size selectivity in the product distribution of ethene dehydrogenation on niobium clusters
,”
J. Phys. Chem. A
109
,
7046
7056
(
2005
).
38.
Y. G.
Byun
,
S. Z.
Kan
,
S. A.
Lee
,
Y. H.
Kim
,
M.
Miletic
,
R. E.
Bleil
,
S.
Kais
, and
B. S.
Freiser
, “
Experimental and theoretical studies of Nb6C70/+
,”
J. Phys. Chem.
100
,
6336
6341
(
1996
).
39.
W.
Spengler
and
R.
Kaiser
, “
First and second order Raman scattering in transition metal compounds
,”
Solid State Commun.
18
,
881
884
(
1973
).
40.
C.
Oshima
,
R.
Souda
,
M.
Aono
,
S.
Otani
, and
Y.
Ishizawa
, “
Surface phonons of the superconducting materials NbC(100) and TaC(100)
,”
Phys. Rev. Lett.
56
,
240
(
1986
).
41.
E. K.
Storms
and
N. H.
Krikorian
, “
The variation of lattice parameter with carbon content of niobium carbide
,”
J. Phys. Chem.
63
(
10
),
1747
1749
(
1959
).
42.
L. E.
Toth
,
Refractory Materials a Series of Monographs, Volume 7: Transition Metal Carbides and Nitrides
(
Academic Press
,
1971
).
43.
G.
Xu-Peng
,
J.
Ye-Hua
,
L.
Yang-Zhen
,
Z.
Rong
, and
F.
Jing
, “
Stability and elastic properties of NbxCy compounds
,”
Chin. Phys. B
23
,
097704
(
2014
).
44.
R.
Bauer
,
A.
Liu
, and
D.
Strauch
, “
Phonon linewidths due to electron-phonon coupling in NbC
,”
Physica B
263-264
,
452
454
(
1999
).
45.
W.
Weber
, “
Lattice dynamics of transition-metal carbides
,”
Phys. Rev. B
8
,
5082
(
1973
).
46.
C.
Cao
,
R.
Tao
,
D. C.
Ford
,
R. F.
Klie
,
T.
Proslier
,
L. D.
Cooley
,
A.
Dzyuba
,
P.
Zapol
,
M.
Warren
,
H.
Lind
, and
J. F.
Zasadzinski
, “
Giant two-phonon Raman scattering from nanoscale NbC precipitates in Nb
,”
Phys. Rev. B
91
,
094302
(
2015
).
47.
A.
Fielicke
,
C.
Ratsch
,
G.
von Helden
, and
G.
Meijer
, “
The far-infrared spectra of neutral and cationic niobium clusters: Nb50/+ to Nb90/+
,”
J. Chem. Phys.
127
,
234306
(
2007
).

Supplementary Material

You do not currently have access to this content.