Accurate rational approximations of the Fermi-Dirac distribution are a useful component in many numerical algorithms for electronic structure calculations. The best known approximations use O(log(βΔ)log(ϵ−1)) poles to achieve an error tolerance ϵ at temperature β−1 over an energy interval Δ. We apply minimax approximation to reduce the number of poles by a factor of four and replace Δ with Δocc, the occupied energy interval. This is particularly beneficial when Δ ≫ Δocc, such as in electronic structure calculations that use a large basis set.

1.
L.
Lin
,
M.
Chen
,
C.
Yang
, and
L.
He
,
J. Phys.: Condens. Matter
25
,
295501
(
2013
).
2.
S.
Goedecker
,
Rev. Mod. Phys.
71
,
1085
(
1999
).
3.
C.
Rostgaard
,
K. W.
Jacobsen
, and
K. S.
Thygesen
,
Phys. Rev. B
81
,
085103
(
2010
).
4.
J. E.
Moussa
,
J. Chem. Phys.
140
,
014107
(
2014
).
5.
M.
Kaltak
,
J.
Klimeš
, and
G.
Kresse
,
J. Chem. Theory Comput.
10
,
2498
(
2014
).
6.
S.
Goedecker
,
Phys. Rev. B
48
,
17573
(
1993
).
7.
L.
Lin
,
J.
Lu
,
L.
Ying
, and
E.
Weinan
,
Chin. Ann. Math., Ser. B
30
,
729
(
2009
).
8.
See http://arxiv.org/abs/1605.03085 for source code and data tables.
9.
W.
Fraser
and
J. F.
Hart
,
Commun. ACM
5
,
401
(
1962
).
10.
T.-W.
Chiu
,
T.-H.
Hsieh
,
C.-H.
Huang
, and
T.-R.
Huang
,
Phys. Rev. D
66
,
114502
(
2002
).
11.
S.
Schechter
,
Math. Comput.
13
,
73
(
1959
).
12.
M.
Koenig
,
A.
Benuzzi-Mounaix
,
A.
Ravasio
,
T.
Vinci
,
N.
Ozaki
,
S.
Lepape
,
D.
Batani
,
G.
Huser
,
T.
Hall
, and
D.
Hicks
,
Plasma Phys. Controlled Fusion
47
,
B441
(
2005
).
13.
N.
Hale
,
N. J.
Higham
, and
L. N.
Trefethen
,
SIAM J. Numer. Anal.
46
,
2505
(
2008
).
14.
T.
Ozaki
,
Phys. Rev. B
75
,
035123
(
2007
).
15.
A.
Croy
and
U.
Saalmann
,
Phys. Rev. B
80
,
073102
(
2009
).
16.
J.
Hu
,
R.-X.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
133
,
101106
(
2010
).
17.
C.
Karrasch
,
V.
Meden
, and
K.
Schönhammer
,
Phys. Rev. B
82
,
125114
(
2010
).
18.
L.
Lin
,
J.
Lu
,
R.
Car
, and
W.
E
,
Phys. Rev. B
79
,
115133
(
2009
).
19.
J.
Almlöf
,
Chem. Phys. Lett.
181
,
319
(
1991
).
20.
A. A.
Frost
and
B.
Musulin
,
J. Chem. Phys.
21
,
572
(
1953
).
21.
D.
Kershaw
,
Math. Comput.
23
,
189
(
1969
).
22.
P.
Schlegel
,
Math. Comput.
24
,
665
(
1970
).
23.
M.
Gu
and
S. C.
Eisenstat
,
SIAM J. Matrix Anal. Appl.
16
,
172
(
1995
).
24.
S.
Börm
,
L.
Grasedyck
, and
W.
Hackbusch
,
Eng. Anal. Boundary Elem.
27
,
405
(
2003
).
25.
J.
Vogel
,
J.
Xia
,
S.
Cauley
, and
V.
Balakrishnan
,
SIAM J. Sci. Comput.
38
,
A1358
(
2016
).
You do not currently have access to this content.