Many polymers exhibit much steeper temperature dependence of their structural relaxation time (higher fragility) than liquids of small molecules, and the mechanism of this unusually high fragility in polymers remains a puzzle. To reveal additional hints for understanding the underlying mechanism, we analyzed correlation of many properties of polymers to their fragility on example of model polymer polystyrene with various molecular weights (MWs). We demonstrate that these correlations work for short chains (oligomers), but fail progressively with increase in MW. Our surprising discovery is that the steepness of the temperature dependence (fragility) of the viscosity that is determined by chain relaxation follows the correlations at all molecular weights. These results suggest that the molecular level relaxation still follows the behavior usual for small molecules even in polymers, and its fragility (chain fragility) falls in the range usual for molecular liquids. It is the segmental relaxation that has this unusually high fragility. We speculate that many polymers cannot reach an ergodic state on the time scale of segmental dynamics due to chain connectivity and rigidity. This leads to sharper decrease in accessible configurational entropy upon cooling and results in steeper temperature dependence of segmental relaxation. The proposed scenario provides a new important insight into the specifics of polymer dynamics: the role of ergodicity time and length scale. At the end, we suggest that a similar scenario can be applicable also to other molecular systems with slow intra-molecular degrees of freedom and to chemically complex systems where the time scale of chemical fluctuations can be longer than the time scale of structural relaxation.

2.
P. G.
Debenedetti
and
F. H.
Stillinger
,
Nature
410
,
259
(
2001
).
3.
C. A.
Angell
,
K. L.
Ngai
,
G. B.
McKenna
,
P. F.
McMillan
, and
S. W.
Martin
,
J. Appl. Phys.
88
,
3113
(
2000
).
4.
G.
Adam
and
J. H.
Gibbs
,
J. Chem. Phys.
43
,
139
(
1965
).
5.
D.
Kivelson
and
G.
Tarjus
,
J. Non-Cryst. Solids
235-237
,
86
(
1998
).
6.
C. A.
Angell
,
J. Non-Cryst. Solids
73
,
1
(
1985
).
7.
R.
Böhmer
,
K. L.
Ngai
,
C. A.
Angell
, and
D. J.
Plazek
,
J. Chem. Phys.
99
,
4201
(
1993
).
8.
C.
Gainaru
,
A. L.
Agapov
,
V.
Fuentes-Landete
 et al.,
Proc. Natl. Acad. Sci. U. S. A.
111
,
17402
(
2014
).
9.
A. L.
Agapov
,
A. I.
Kolesnikov
,
V. N.
Novikov
,
R.
Richert
, and
A. P.
Sokolov
,
Phys. Rev. E
91
,
022312
(
2015
).
10.
D.
Huang
and
G. B.
McKenna
,
J. Chem. Phys.
114
,
5621
(
2001
).
11.
P. G.
Santangelo
and
C. M.
Roland
,
Macromolecules
31
,
4581
(
1998
).
12.
C. M.
Roland
and
R.
Casalini
,
J. Chem. Phys.
119
,
1838
(
2003
).
13.
Y.
Ding
,
V. N.
Novikov
,
A. P.
Sokolov
,
A.
Cailliaux
,
C.
Dalle-Ferrier
,
C.
Alba-Simionesco
, and
B.
Frick
,
Macromolecules
37
,
9264
(
2004
).
14.
E. B.
Stukalin
,
J. F.
Douglas
, and
K. F.
Freed
,
J. Chem. Phys.
131
,
114905
(
2009
).
15.
J.
Dudowicz
,
K. F.
Freed
, and
J. F.
Douglas
,
J. Phys. Chem. B
109
,
21285
(
2005
).
16.
J.
Dudowicz
,
K. F.
Freed
, and
J. F.
Douglas
,
J. Phys. Chem. B
109
,
21350
(
2005
).
17.
J.
Dudowicz
and
K. F.
Freed
,
J. Chem. Phys.
124
,
064901
(
2006
).
18.
K.
Kunal
,
C. G.
Robertson
,
S.
Pawlus
,
S. F.
Hahn
, and
A. P.
Sokolov
,
Macromolecules
41
,
7232
(
2008
).
19.
A. L.
Agapov
,
V. N.
Novikov
, and
A. P.
Sokolov
, “
Fragility and other properties of glass-forming liquids: Two decades of puzzling correlations
,” in
Fragility of Glass-forming Liquids
, edited by
A. L.
Greer
,
K.
Kelton
, and
S.
Sastry
(
Hindustan Book Agency
,
Gurgaon
,
2014
), Chap. 4.
20.
A. P.
Sokolov
,
E.
Rössler
,
A.
Kisliuk
, and
D.
Quitmann
,
Phys. Rev. Lett.
71
,
2062
(
1993
).
21.
K.
Niss
and
C.
Alba-Simionesco
,
Phys. Rev. B
74
,
024205
(
2006
).
22.
K.
Niss
,
C.
Dalle-Ferrier
,
B.
Frick
,
D.
Russo
,
J.
Dyre
, and
C.
Alba-Simionesco
,
Phys. Rev. E
82
,
021508
(
2010
).
23.
T.
Scopigno
,
G.
Ruocco
,
F.
Sette
, and
G.
Monaco
,
Science
302
,
849
(
2003
).
24.
T.
Scopigno
,
D.
Cangialosi
, and
G.
Ruocco
,
Phys. Rev. B
81
,
100202(R)
(
2010
).
25.
V. N.
Novikov
and
A. P.
Sokolov
,
Nature
431
,
961
(
2004
).
26.
V. N.
Novikov
,
Y.
Ding
, and
A. P.
Sokolov
,
Phys. Rev. E
71
,
061501
(
2005
).
27.
J. C.
Dyre
,
N. B.
Olsen
, and
T.
Christensen
,
Phys. Rev. B
53
,
2171
(
1996
).
28.
J. C.
Dyre
,
T. E.
Christensen
, and
N. B.
Olsen
,
J. Non-Cryst. Solids
352
,
4632
(
2006
).
29.
J. C.
Dyre
,
Rev. Mod. Phys.
78
,
953
(
2006
).
30.
K.
Niss
,
C.
Dalle-Ferrier
,
V. M.
Giordano
,
G.
Monaco
,
B.
Frick
, and
C.
Alba-Simionesco
,
J. Chem. Phys.
129
,
194513
(
2008
).
31.
K.
Niss
,
C.
Dalle-Ferrier
,
V. M.
Giordano
,
G.
Monaco
,
B.
Frick
, and
C.
Alba-Simionesco
,
J. Chem. Phys.
131
,
249902
(
2009
).
32.
L.
Larini
,
A.
Ottochian
,
C.
De Michele
, and
D.
Leporini
,
Nat. Phys.
4
,
42
(
2008
).
33.
V. N.
Novikov
and
A. P.
Sokolov
,
Phys. Rev. B
74
,
064203
(
2006
).
34.
C.
Dalle-Ferrier
,
K.
Niss
,
A. P.
Sokolov
,
B.
Frick
,
J.
Serrano
, and
C.
Alba-Simionesco
,
Macromolecules
43
,
8977
(
2010
).
35.
J.
Colmenero
,
J. Phys.: Condens. Matter
27
,
103101
(
2015
).
36.
L.
Hong
,
B.
Begen
,
A.
Kisliuk
,
C.
Alba-Simionesco
,
V. N.
Novikov
, and
A. P.
Sokolov
,
Phys. Rev. B
78
,
134201
(
2008
).
37.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics
, 3rd ed. (
Butterworth-Heinemann
,
Oxford
,
1980
).
38.
V. K.
Malinovsky
and
A. P.
Sokolov
,
Solid State Commun.
57
,
757
(
1986
).
39.
U.
Buchenau
,
M.
Prager
,
R.
Nucker
,
A. J.
Dianoux
,
N.
Ahmad
, and
W. A.
Phillips
,
Phys. Rev. B
34
,
5665
(
1986
).
40.
E.
Courtens
,
M.
Foret
,
B.
Hehlen
, and
R.
Vacher
,
Solid State Commun.
117
,
187
(
2001
).
41.
R.
Gray
,
G.
Harrison
, and
J.
Lamb
,
Proc. R. Soc. London, A
356
,
77
(
1977
).
42.
P.
Zoller
and
D.
Walsh
,
Standard Pressure-Volume-Temperature Data for Polymers
(
Technomic Publishing Co.
,
Lancaster, PA
,
1995
).
43.
R.
Casalini
,
C. M.
Roland
, and
S.
Capaccioli
,
J. Chem. Phys.
126
,
184903
(
2007
).
44.
D.
Cangialosi
,
A.
Alegría
, and
J.
Colmenero
,
Europhys. Lett.
70
,
614
(
2005
).
45.
P. G.
Santangelo
and
C. M.
Roland
,
Phys. Rev. B
58
,
14121
(
1998
).
46.
J.
Jäckle
, in
Amorphous Solids: Low-Temperature Properties
, edited by
W. A.
Phillips
(
Springer
,
Berlin
,
1981
).
47.
V. Z.
Gochiyaev
,
V. K.
Malinovsky
,
V. N.
Novikov
, and
A. P.
Sokolov
,
Philos. Mag. B
63
,
777
(
1991
).
48.
A. P.
Sokolov
,
U.
Buchenau
,
W.
Steffen
,
B.
Frick
, and
A.
Wischnewski
,
Phys. Rev. B
52
,
R9815
(
1995
).
49.
S. V.
Adichtchev
,
N. V.
Surovtsev
,
J.
Wiedersich
,
A.
Brodin
,
V. N.
Novikov
, and
E. A.
Rössler
,
J. Non-Cryst. Solids
353
,
1491
(
2007
).
50.
S. V.
Adichtchev
,
St.
Benkhof
,
Th.
Blochowicz
,
V. N.
Novikov
,
E.
Rössler
,
Ch.
Tschirwitz
, and
J.
Wiedersich
,
Phys. Rev. Lett.
88
,
055703
(
2002
).
51.
W.
Götze
,
Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory
(
Oxford University Press
,
Oxford
,
2012
).
52.
R.
Richert
and
C. A.
Angell
,
J. Chem. Phys.
108
,
9016
(
1998
).
53.
U.
Mohanty
,
N.
Craig
, and
J. T.
Fourkas
,
J. Chem. Phys.
114
,
10577
(
2001
).
54.
L.
Battezzati
,
Mater. Trans.
46
,
2915
(
2005
).
55.
S. N.
Yannopolous
and
G. P.
Johary
,
Nature
442
,
E7
(
2006
).
56.
P.
Richet
,
Geochim. Cosmochim. Acta
48
,
471
(
1984
).
57.
J. H.
Magill
,
J. Chem. Phys.
47
,
2802
(
1967
).
58.
C. M.
Roland
,
S.
Capaccioli
,
M.
Lucchesi
, and
R.
Casalini
,
J. Chem. Phys.
120
,
10640
(
2004
).
59.
A.
Scala
,
F. W.
Starr
,
E.
La Nave
,
F.
Sciortino
, and
H. E.
Stanley
,
Nature
406
,
166
(
2000
).
61.
K.
Kishimoto
,
H.
Suga
, and
S.
Seki
,
Bull. Chem. Soc. Jpn.
46
,
3020
(
1973
).
62.
A. P.
Sokolov
and
K. S.
Schweizer
,
Phys. Rev. Lett.
102
,
248301
(
2009
).
63.
Y.
Ding
and
A. P.
Sokolov
,
Macromolecules
39
,
3322
(
2006
).
64.
K. L.
Ngai
,
D. J.
Plazek
, and
C. M.
Roland
,
Macromolecules
41
,
3925
(
2008
).
65.
A.
Agapov
,
Y.
Wang
,
V. N.
Novikov
, and
A. P.
Sokolov
,
Macromolecules
(unpublished).
66.
E.
Duval
,
A.
Boukenter
, and
T.
Achibat
,
J. Phys. Condens. Matter
2
,
10227
(
1990
).
67.
W.
Schirmacher
,
B.
Schmid
,
C.
Tomaras
,
G.
Viliani
,
G.
Baldi
,
G.
Ruocco
, and
T.
Scopigno
,
Phys. Status Solidi C
5
,
862
(
2008
).
68.
D.
Quitmann
,
M.
Soltwisch
, and
G.
Ruocco
,
J. Non-Cryst. Solids
203
,
12
(
1996
).
69.
Y.
Ding
,
A.
Kisliuk
, and
A. P.
Sokolov
,
Macromolecules
37
,
161
(
2004
).
70.
S.
Mirigian
and
K. S.
Schweizer
,
Macromolecules
48
,
1901
(
2015
).
71.
M. D.
Ediger
,
C. A.
Angell
, and
S. R.
Nagel
,
J. Phys. Chem.
100
,
13200
(
1996
).
72.
J.
Korus
,
E.
Hempel
,
M.
Beiner
,
S.
Kahle
, and
E.
Donth
,
Acta Polym.
48
,
369
(
1997
).
73.
U.
Tracht
,
M.
Wilhelm
,
A.
Heuer
,
H.
Feng
,
K.
Schmidt-Rohr
, and
H. W.
Spiess
,
Phys. Rev. Lett.
81
,
2727
(
1998
).
74.
M. D.
Ediger
,
Annu. Rev. Phys. Chem.
51
,
99
(
2000
).
75.
J. S.
Smith
,
O.
Borodin
, and
G. D.
Smith
,
J. Phys. Chem. B
108
,
20340
(
2004
).
76.
S.
Arrese-Igor
,
A.
Arbe
,
B.
Frick
, and
J.
Colmenero
,
Macromolecules
44
,
3161
(
2011
).
77.
B. C.
Laskowski
,
R. L.
Jaffe
, and
A.
Komornicki
, in
Applied Quantum Chemistry
, edited by
V. H.
Smith
, Jr.
, et al.
(
D. Reidel Publishing Company
,
Dordrecht
,
1986
), pp.
347
359
.
78.
M.
Bernabei
,
A. J.
Moreno
, and
J.
Colmenero
,
Phys. Rev. Lett.
101
,
255701
(
2008
).
79.
M.
Bernabei
,
A. J.
Moreno
, and
J.
Colmenero
,
J. Chem. Phys.
131
,
204502
(
2009
).
80.
R.
Kumar
,
M.
Goswami
,
B. G.
Sumpter
,
V. N.
Novikov
, and
A. P.
Sokolov
,
Phys. Chem. Chem. Phys.
15
,
4604
(
2013
).
81.
S.
Mirigian
and
K. S.
Schweizer
,
J. Chem. Phys.
140
,
194507
(
2014
).
82.
K. L.
Ngai
and
D. J.
Plazek
,
Rubber Chem. Technol.
68
,
376
(
1995
).
83.
D. J.
Plazek
,
J. Phys. Chem.
69
,
3480
(
1965
).
84.
M. D.
Ediger
and
P.
Harrowell
,
J. Chem. Phys.
137
,
080901
(
2012
).
85.
P. G.
Santangelo
and
C. M.
Roland
,
J. Rheol.
45
,
583
(
2001
).
86.
K. S.
Schweizer
and
E. J.
Saltzman
,
J. Phys. Chem. B
108
,
19729
(
2004
).
87.
A. P.
Sokolov
,
V. N.
Novikov
, and
A.
Kisliuk
,
Philos. Mag.
87
,
613
(
2007
).
88.
A. C.
Ling
and
J. E.
Willard
,
J. Phys. Chem.
72
,
1918
(
1968
).
89.
J.
Hintermeyer
,
A.
Herrmann
,
R.
Kahlau
,
C.
Goiceanu
, and
E. A.
Rössler
,
Macromolecules
41
,
9335
(
2008
).
You do not currently have access to this content.