Previously, we showed that compressive or compressed sensing (CS) can be used to reduce significantly the data required to obtain 2D-NMR relaxation and diffusion spectra when they are sparse or well localized. In some cases, an order of magnitude fewer uniformly sampled data were required to reconstruct 2D-MR spectra of comparable quality. Nonetheless, this acceleration may still not be sufficient to make 2D-MR spectroscopy practicable for many important applications, such as studying time-varying exchange processes in swelling gels or drying paints, in living tissue in response to various biological or biochemical challenges, and particularly for in vivo MRI applications. A recently introduced framework, marginal distributions constrained optimization (MADCO), tremendously accelerates such 2D acquisitions by using a priori obtained 1D marginal distribution as powerful constraints when 2D spectra are reconstructed. Here we exploit one important intrinsic property of the 2D-MR relaxation exchange spectra: the fact that the 1D marginal distributions of each 2D-MR relaxation exchange spectrum in both dimensions are equal and can be rapidly estimated from a single Carr–Purcell–Meiboom–Gill (CPMG) or inversion recovery prepared CPMG measurement. We extend the MADCO framework by further proposing to use the 1D marginal distributions to inform the subsequent 2D data-sampling scheme, concentrating measurements where spectral peaks are present and reducing them where they are not. In this way we achieve compression or acceleration that is an order of magnitude greater than that in our previous CS method while providing data in reconstructed 2D-MR spectral maps of comparable quality, demonstrated using several simulated and real 2D T2T2 experimental data. This method, which can be called “informed compressed sensing,” is extendable to other 2D- and even ND-MR exchange spectroscopy.

1.
P. T.
Callaghan
,
Principles of Nuclear Magnetic Resonance Microscopy
(
Oxford University Press
,
New York
,
1991
).
2.
A.
MacKay
,
C.
Laule
,
I.
Vavasour
,
T.
Bjarnason
,
S.
Kolind
, and
B.
Mädler
,
Magn. Reson. Imaging
24
,
515
(
2006
).
3.
S.
Peled
,
D. G.
Cory
,
S. A.
Raymond
,
D. A.
Kirschner
, and
A.
Jolesz
,
Magn. Reson. Med.
42
,
911
(
1999
).
4.
E. J.
Fordham
,
A.
Sezginer
, and
L. D.
Hall
,
J. Magn. Reson., Ser. A
113
,
139
(
1995
).
5.
R.
Bai
,
C. G.
Koay
,
E.
Hutchinson
, and
P. J.
Basser
,
J. Magn. Reson.
244
,
53
(
2014
).
6.
N.
Wang
and
Y.
Xia
,
J. Magn. Reson.
212
,
124
(
2011
).
8.
Y.-Q.
Song
,
H.
Cho
,
T.
Hopper
,
A. E.
Pomerantz
, and
P. Z.
Sun
,
J. Chem. Phys.
128
,
052212
(
2008
).
9.
P.
McDonald
,
J.-P.
Korb
,
J.
Mitchell
, and
L.
Monteilhet
,
Phys. Rev. E
72
,
011409
(
2005
).
10.
P. J.
McDonald
,
J.
Mitchell
,
M.
Mulheron
,
P. S.
Aptaker
,
J.-P.
Korb
, and
L.
Monteilhet
,
Cem. Concr. Res.
37
,
303
(
2007
).
11.
M. D.
Does
and
R. E.
Snyder
,
Magn. Reson. Imaging
13
,
575
(
1995
).
12.
M. D.
Does
,
C.
Beaulieu
,
P. S.
Allen
,
R. E.
Snyder
, and
R. I. E. S.
Nyder
,
Magn. Reson. Imaging
16
,
1033
(
1998
).
13.
R.
Harrison
,
M. J.
Bronskill
, and
R. M.
Henkelman
,
Magn. Reson. Med.
33
,
490
(
1995
).
14.
P. T.
Callaghan
,
C. H.
Arns
,
P.
Galvosas
,
M. W.
Hunter
,
Y.
Qiao
, and
K. E.
Washburn
,
Magn. Reson. Imaging
25
,
441
(
2007
).
15.
P. T.
Callaghan
and
I.
Furó
,
J. Chem. Phys.
120
,
4032
(
2004
).
16.
Y.
Qiao
,
P.
Galvosas
,
T.
Adalsteinsson
,
M.
Schönhoff
, and
P. T.
Callaghan
,
J. Chem. Phys.
122
,
214912
(
2005
).
17.
K.
Washburn
and
P.
Callaghan
,
Phys. Rev. Lett.
97
,
175502
(
2006
).
18.
P.
Galvosas
,
Y.
Qiao
,
M.
Schönhoff
, and
P. T.
Callaghan
,
Magn. Reson. Imaging
25
,
497
(
2007
).
19.
L.
Monteilhet
,
J.-P.
Korb
,
J.
Mitchell
, and
P.
McDonald
,
Phys. Rev. E
74
,
061404
(
2006
).
20.
L. M.
Burcaw
and
P. T.
Callaghan
,
J. Magn. Reson.
198
,
167
(
2009
).
21.
G.
Benga
,
Prog. Biophys. Mol. Biol.
51
,
193
(
1988
).
22.
Y.
Zhang
,
M.
Poirier-Quinot
,
C. S.
Springer
, and
J. A.
Balschi
,
Biophys. J.
101
,
2833
(
2011
).
23.
W. D.
Rooney
,
X.
Li
,
M. K.
Sammi
,
D. N.
Bourdette
,
E. A.
Neuwelt
, and
C. S.
Springer
,
NMR Biomed.
28
,
607
(
2015
).
24.
J. D.
Quirk
,
G. L.
Bretthorst
,
T. Q.
Duong
,
A. Z.
Snyder
,
C. S.
Springer
,
J. J. H.
Ackerman
, and
J. J.
Neil
,
Magn. Reson. Med.
50
,
493
(
2003
).
25.
R. D.
Dortch
,
R. A.
Horch
, and
M. D.
Does
,
J. Chem. Phys.
131
,
164502
(
2009
).
26.
J. H.
Lee
,
C.
Labadie
,
C. S.
Springer
, and
G. S.
Harbison
,
J. Am. Chem. Soc.
115
,
7761
(
1993
).
27.
Y.-Q.
Song
,
L.
Venkataramanan
,
M. D.
Hürlimann
,
M.
Flaum
,
P.
Frulla
, and
C.
Straley
,
J. Magn. Reson.
154
,
261
(
2002
).
28.
L.
Venkataramanan
,
Y.
Song
, and
M. D.
Hürlimann
,
IEEE Trans. Signal Process.
50
,
1017
(
2002
).
29.
N.
Marigheto
,
L.
Venturi
,
D.
Hibberd
,
K. M.
Wright
,
G.
Ferrante
, and
B. P.
Hills
,
J. Magn. Reson.
187
,
327
(
2007
).
30.
E. W.
Abel
,
T. P. J.
Coston
,
K. G.
Orrell
,
V.
Sik
, and
D.
Stephenson
,
J. Magn. Reson.
70
,
34
(
1986
).
31.
J.
Mitchell
,
T. C.
Chandrasekera
, and
L. F.
Gladden
,
Prog. Nucl. Magn. Reson. Spectrosc.
62
,
34
(
2012
).
32.
R. D.
Dortch
,
K. D.
Harkins
,
M. R.
Juttukonda
,
J. C.
Gore
, and
M. D.
Does
,
Magn. Reson. Med.
70
,
1450
(
2013
).
33.
M. N.
d’Eurydice
,
E. T.
Montrazi
,
C. A.
Fortulan
, and
T. J.
Bonagamba
,
J. Chem. Phys.
144
,
204201
(
2016
).
34.
R.
Song
,
Y.-Q.
Song
,
M.
Vembusubramanian
, and
J. L.
Paulsen
,
J. Magn. Reson.
265
,
164
(
2016
).
35.
R.
Bai
,
A.
Cloninger
,
W.
Czaja
, and
P. J.
Basser
,
J. Magn. Reson.
255
,
88
(
2015
).
36.
A.
Cloninger
,
W.
Czaja
,
R.
Bai
, and
P. J.
Basser
,
SIAM J. Imaging Sci.
7
,
1775
(
2014
).
37.
D.
Benjamini
and
P. J.
Basser
,
J. Magn. Reson.
271
,
40
(
2016
).
39.
H. M.
McConnell
,
J. Chem. Phys.
28
,
430
(
1958
).
40.
M. V.
Landeghem
and
A.
Haber
,
Concepts Magn. Reson., Part A
36A
,
153
(
2010
).
41.
J. A.
Jones
,
J. Magn. Reson.
126
,
283
(
1997
).
42.
J. A.
Jones
,
P.
Hodgkinson
,
A. L.
Barker
, and
P. J.
Hore
,
J. Magn. Reson., Ser. B
113
,
25
(
1996
).
43.
D.
Benjamini
and
P. J.
Basser
,
J. Chem. Phys.
141
,
214202
(
2014
).
44.
R. A.
Horch
and
M. D.
Does
,
Magn. Reson. Mater. Phys., Biol. Med.
20
,
51
(
2007
).
45.
C. S.
Landis
,
X.
Li
,
F. W.
Telang
,
P. E.
Molina
,
I.
Palyka
,
G.
Vetek
, and
C. S.
Springer
,
Magn. Reson. Med.
42
,
467
(
1999
).
46.
C.
Laule
,
I. M.
Vavasour
,
S. H.
Kolind
,
D. K. B.
Li
,
T. L.
Traboulsee
,
G. R. W.
Moore
, and
A. L.
MacKay
,
Neurotherapeutics
4
,
460
(
2007
).
47.
A.
Mackay
,
K.
Whittall
,
J.
Adler
,
D.
Li
,
D.
Paty
, and
D.
Graeb
,
Magn. Reson. Med.
31
,
673
(
1994
).
48.
E. P.
Minty
,
T. A.
Bjarnason
,
C.
Laule
, and
A. L.
MacKay
,
Magn. Reson. Med.
61
,
883
(
2009
).
49.
K. D.
Harkins
,
A. N.
Dula
, and
M. D.
Does
,
Magn. Reson. Med.
67
,
793
(
2012
).
You do not currently have access to this content.