Self-propelled particles can spontaneously form dense phases from a dilute suspension in a process referred to as motility-induced phase separation. The properties of the out-of-equilibrium structures that are formed are governed by the specifics of the particle interactions and the strength of the activity. Thus far, most studies into the formation of these structures have focused on spherical colloids, dumbbells, and rod-like particles endowed with various interaction potentials. Only a few studies have examined the collective behavior of more complex particle shapes. Here, we increase the geometric complexity and use molecular dynamics simulations to consider the structures formed by triangular self-propelled particles with surface roughness. These triangles either move towards their apex or towards their base, i.e., they possess a polarity. We find that apex-directed triangles cluster more readily, more stably, and have a smoother cluster interface than their base-directed counterparts. A difference between the two polarities is in line with the results of Wensink et al. [Phys. Rev. E 89, 010302 (2014)]; however, we obtain the reversed result when it comes to clustering, namely, that apex-directed triangles cluster more successfully. We further show that reducing the surface roughness negatively impacts the stability of the base-directed structures, suggesting that their formation is in large part due to surface roughness. Our results lay a solid foundation for future experimental and computational studies into the effect of roughness on the collective dynamics of swimmers.

1.
S.
Ramaswamy
,
Annu. Rev. Condens. Matter Phys.
1
,
323
(
2010
).
2.
M.
Marchetti
 et al,
Rev. Mod. Phys.
85
,
1143
(
2013
).
3.
W. F.
Paxton
 et al,
J. Am. Chem. Soc.
126
,
13424
(
2004
).
4.
Y.
Wang
 et al,
Langmuir
22
,
10451
(
2006
).
5.
J. R.
Howse
 et al,
Phys. Rev. Lett.
99
,
048102
(
2007
).
6.
L. F.
Valadares
 et al,
Small
6
,
565
(
2010
).
7.
S.
Ebbens
,
M.-H.
Tu
,
J. R.
Howse
, and
R.
Golestanian
,
Phys. Rev. E
85
,
020401
(
2012
).
8.
T.-C.
Lee
 et al,
Nano Lett.
14
,
2407
(
2014
).
9.
A.
Brown
and
W.
Poon
,
Soft Matter
10
,
4016
(
2014
).
10.
11.
J.
Simmchen
 et al,
RSC Adv.
4
,
20334
(
2014
).
12.
S. J.
Ebbens
and
J. R.
Howse
,
Soft Matter
6
,
726
(
2010
).
13.
Y.
Hong
,
D.
Velegol
,
N.
Chaturvedi
, and
A.
Sen
,
Phys. Chem. Chem. Phys.
12
,
1423
(
2010
).
14.
S.
Sengupta
,
M. E.
Ibele
, and
A.
Sen
,
Angew. Chem., Int. Ed.
51
,
8434
(
2012
).
15.
W.
Wang
,
W.
Duan
,
S.
Ahmed
,
T. E.
Mallouk
, and
A.
Sen
,
Nano Today
8
,
531
(
2013
).
16.
S.
Sánchez
,
L.
Soler
, and
J.
Katuri
,
Angew. Chem., Int. Ed.
54
,
1414
(
2015
).
18.
M.
Cates
and
J.
Tailleur
,
Annu. Rev. Condens. Matter Phys.
6
,
219
(
2015
).
19.
A.
Sokolov
,
I.
Aranson
,
J.
Kessler
, and
R.
Goldstein
,
Phys. Rev. Lett.
98
,
158102
(
2007
).
20.
J.
Schwarz-Linek
 et al,
Proc. Natl. Acad. Sci. U. S. A.
109
,
4052
(
2012
).
21.
22.
M.
Polin
,
I.
Tuval
,
K.
Drescher
,
J.
Gollub
, and
R.
Goldstein
,
Science
325
,
487
(
2009
).
23.
V.
Geyer
,
F.
Jülicher
,
J.
Howard
, and
B.
Friedrich
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
18058
(
2013
).
24.
25.
I.
Riedel
,
K.
Kruse
, and
J.
Howard
,
Science
309
,
300
(
2005
).
26.
R.
Ma
,
G.
Klindt
,
I.
Riedel-Kruse
,
F.
Jülicher
, and
B.
Friedrich
,
Phys. Rev. Lett.
113
,
048101
(
2014
).
27.
A. T.
Brown
,
W. C. K.
Poon
,
C.
Holm
, and
J.
de Graaf
, e-print arXiv:1512.01778 (2015).
28.
S.
Wang
and
N.
Wu
,
Langmuir
30
,
3477
(
2014
).
29.
A. A.
Solovev
,
Y.
Mei
,
E.
Bermúdez Ureña
,
G.
Huang
, and
O. G.
Schmidt
,
Small
5
,
1688
(
2009
).
30.
Y.
Mei
,
A. A.
Solovev
,
S.
Sanchez
, and
O. G.
Schmidt
,
Chem. Soc. Rev.
40
,
2109
(
2011
).
31.
F.
Kümmel
 et al,
Phys. Rev. Lett.
110
,
198302
(
2013
).
32.
B.
Ten Hagen
 et al,
Nat. Commun.
5
,
4829
(
2014
).
33.
B.
de Nijs
,
A.
van Blaaderen
,
J.
Roeland
, and
J.
van Hest
,
Nanoscale
5
,
1315
(
2013
).
34.
T.
Vicsek
,
A.
Czirók
,
E.
Ben-Jacob
,
I.
Cohen
, and
O.
Shochet
,
Phys. Rev. Lett.
75
,
1226
(
1995
).
35.
X.
Zheng
 et al,
Phys. Rev. E
88
,
032304
(
2013
).
36.
J.
Stenhammar
,
A.
Tiribocchi
,
R.
Allen
,
D.
Marenduzzo
, and
M.
Cates
,
Phys. Rev. Lett.
111
,
145702
(
2013
).
37.
G.
Redner
,
A.
Baskaran
, and
M.
Hagan
,
Phys. Rev. E
88
,
012305
(
2013
).
38.
S.
Thakur
and
R.
Kapral
,
Phys. Rev. E
85
,
026121
(
2012
).
39.
G.
Gonnella
,
A.
Lamura
, and
A.
Suma
,
Int. J. Mod. Phys. C
25
,
1441004
(
2014
).
40.
L.
Cugliandolo
,
G.
Gonnella
, and
A.
Suma
,
Phys. Rev. E
91
,
062124
(
2015
).
41.
C.
Tung
,
J.
Harder
,
C.
Valeriani
, and
A.
Cacciuto
,
Soft Matter
12
,
555
(
2016
).
42.
F.
Peruani
,
A.
Deutsch
, and
M.
Bär
,
Phys. Rev. E
74
,
030904
(
2006
).
43.
H. H.
Wensink
and
H.
Löwen
,
Phys. Rev. E
78
,
031409
(
2008
).
44.
F.
Ginelli
,
F.
Peruani
,
M.
Bär
, and
H.
Chaté
,
Phys. Rev. Lett.
104
,
184502
(
2010
).
45.
Y.
Yang
,
V.
Marceau
, and
G.
Gompper
,
Phys. Rev. E
82
,
031904
(
2010
).
46.
M.
Abkenar
,
K.
Marx
,
T.
Auth
, and
G.
Gompper
,
Phys. Rev. E
88
,
062314
(
2013
).
47.
R.
Isele-Holder
,
J.
Elgeti
, and
G.
Gompper
,
Soft Matter
11
,
7181
(
2015
).
48.
J.-P.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids
(
Elsevier
,
1990
).
49.
D.
Frenkel
,
H.
Lekkerkerker
, and
A.
Stroobants
,
Nature
332
,
822
(
1988
).
50.
P.
Bolhuis
and
D.
Frenkel
,
J. Chem. Phys.
106
,
666
(
1997
).
51.
H.
Wensink
and
H.
Löwen
,
J. Phys.: Condens. Matter
24
,
464130
(
2012
).
52.
H.
Wensink
,
V.
Kantsler
,
R.
Goldstein
, and
J.
Dunkel
,
Phys. Rev. E
89
,
010302
(
2014
).
53.
S.
Mallory
and
A.
Cacciuto
,
Phys. Rev. E
94, 022607 (2016).
54.
V.
Prymidis
,
S.
Samin
, and
L.
Filion
,
Soft Matter
12
,
4309
(
2016
).
55.
D.
Alizadehrad
,
T.
Krüger
,
M.
Engstler
, and
H.
Stark
,
PLoS Comput. Biol.
11
,
e1003967
(
2015
).
56.
J.
Elgeti
,
U.
Kaupp
, and
G.
Gompper
,
Biophys. J.
99
,
1018
(
2010
).
57.
J.
Hu
,
M.
Yang
,
G.
Gompper
, and
R.
Winkler
,
Soft Matter
11
,
7867
(
2015
).
58.
A.
Kaiser
,
K.
Popowa
,
H. H.
Wensink
, and
H.
Löwen
,
Phys. Rev. E
88
,
022311
(
2013
).
59.

Note that our equation of motion is 3D and we therefore must employ quaternions to specify 3D rotation.

60.
N.
Martys
and
R.
Mountain
,
Phys. Rev. E
59
,
3733
(
1999
).
61.
P.
Ahlrichs
and
B.
Dünweg
,
J. Chem. Phys.
111
,
8225
(
1999
).
62.
V.
Lobaskin
and
B.
Dünweg
,
New J. Phys.
6
,
54
(
2004
).
63.
D.
Roehm
,
S.
Kesselheim
, and
A.
Arnold
,
Soft Matter
10
,
5503
(
2014
).
64.
L.
Fischer
,
T.
Peter
,
C.
Holm
, and
J.
de Graaf
,
J. Chem. Phys.
143
,
084107
(
2015
).
65.
J.
de Graaf
,
T.
Peter
,
L.
Fischer
, and
C.
Holm
,
J. Chem. Phys.
143
,
084108
(
2015
).
66.
J.
de Graaf
 et al,
J. Chem. Phys.
144
,
134106
(
2016
).
67.
J.
de Graaf
 et al,
Soft Matter
12
,
4704
(
2016
).
68.
H. J.
Limbach
,
A.
Arnold
,
B. A.
Mann
, and
C.
Holm
,
Comput. Phys. Commun.
174
,
704
(
2006
).
69.
A.
Arnold
 et al, “
ESPResSo 3.1—Molecular dynamics software for coarse-grained models
,” in
Meshfree Methods for Partial Differential Equations VI
, edited by
M.
Griebel
and
M. A.
Schweitzer
,
Lecture Notes in Computational Science and Engineering
Vol.
89
(
Springer
,
2013
), p.
1
.
70.
A.
Ortega
and
J.
de la Torre
,
J. Chem. Phys.
119
,
9914
(
2003
).
71.
N.
Mermin
and
H.
Wagner
,
Phys. Rev. Lett.
17
,
1133
(
1966
).
72.
D.
Kraft
 et al,
J. Phys. Chem. B
115
,
7175
(
2010
).
73.
D.
Kraft
 et al,
Phys. Rev. E
88
,
050301
(
2013
).
74.
N.
Lin
 et al,
Phys. Rev. Lett.
115
,
228304
(
2015
).
75.
J.
Deseigne
,
O.
Dauchot
, and
H.
Chaté
,
Phys. Rev. Lett.
105
,
098001
(
2010
).
76.
N.
Kumar
,
H.
Soni
,
S.
Ramaswamy
, and
A.
Sood
,
Nat. Commun.
5
,
4688
(
2014
).
You do not currently have access to this content.