The mechanism of diffusion of helical particles in the new screw-like nematic phase is studied by molecular dynamics numerical simulation. Several dynamical indicators are reported that evidence and microscopically characterise the special translo-rotational motion by which helical particles move in this chiral liquid-crystalline phase. Besides mean square displacements and diffusion coefficients resolved parallel and perpendicular to the nematic director, a suitable translo-rotational van Hove self-correlation function and a sequence of translational and rotational velocity, self- and distinct-, time correlation functions are calculated. The analysis of all these correlation functions elicits the operativeness of the aforementioned coupled mechanism and allows its short- and long-time quantitative characterisation.

1.
P. G.
de Gennes
and
J.
Prost
,
The Physics of Liquid Crystals
(
Clarendon Press
,
Oxford
,
1993
).
2.
E.
Barry
,
Z.
Hensel
,
Z.
Dogic
,
M.
Shribak
, and
R.
Oldenbourg
,
Phys. Rev. Lett.
96
,
018305
(
2006
).
3.
F.
Manna
,
V.
Lorman
,
R.
Podgornik
, and
B.
Zeks
,
Phys. Rev. E
75
,
030901(R)
(
2007
).
4.
H. B.
Kolli
,
E.
Frezza
,
G.
Cinacchi
,
A.
Ferrarini
,
A.
Giacometti
, and
T. S.
Hudson
,
J. Chem. Phys.
140
,
081101
(
2014
).
5.
H. B.
Kolli
,
E.
Frezza
,
G.
Cinacchi
,
A.
Ferrarini
,
A.
Giacometti
,
T. S.
Hudson
,
C.
De Michele
, and
F.
Sciortino
,
Soft Matter
10
,
8171
(
2014
).
6.
H. B.
Kolli
,
G.
Cinacchi
,
A.
Ferrarini
, and
A.
Giacometti
,
Faraday Discuss.
186
,
171
(
2016
).
7.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford
,
1987
);
J. M.
Haile
,
Molecular Dynamics Simulation: Elementary Methods
(
Wiley
,
New York
,
1997
);
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
(
Cambridge University Press
,
Cambridge
,
2004
).
8.
G.
Cinacchi
,
L.
De Gaetani
, and
A.
Tani
,
J. Chem. Phys.
122
,
184513
(
2005
).
9.
M.
Cifelli
,
G.
Cinacchi
, and
L.
De Gaetani
,
J. Chem. Phys.
125
,
164912
(
2006
).
10.
G.
Cinacchi
and
L.
De Gaetani
,
Phys. Rev. E
79
,
011706
(
2009
).
11.
12.

It was explicitly verified that, in a MD-NVT numerical simulation carried out on the soft repulsive helical particle system at kBT/ϵ = 1 and a value of number density coincident with the average density obtained in the previous MC-NPT numerical simulation on the corresponding hard helical particle system at Pd3/kBT = 0.75, the resulting average dimensionless pressure 3/kBT was 0.77, consistent with the value set in the previous MC-NPT numerical simulation.

13.

On the basis of, e.g., a comparison between the phase behaviour of hard14 and soft15 repulsive rod-like particles.

14.
P.
Bolhuis
and
D.
Frenkel
,
J. Chem. Phys.
106
,
666
(
1996
).
15.
G.
Cinacchi
,
L.
De Gaetani
, and
A.
Tani
,
Phys. Rev. E
71
,
031703
(
2005
).
16.
R.
van Roij
,
P.
Bolhuis
,
B.
Mulder
, and
D.
Frenkel
,
Phys. Rev. E
52
,
R1277
(
1995
).
17.
J. S.
van Duijneveldt
and
M. P.
Allen
,
Mol. Phys.
90
,
243
(
1997
).
18.
G.
Cinacchi
and
L.
De Gaetani
,
Phys. Rev. Lett.
103
,
257801
(
2009
).
19.
M. P.
Allen
,
Phys. Rev. Lett.
65
,
2881
(
1990
).
20.
L.
van Hove
,
Phys. Rev.
95
,
249
(
1954
).
21.
A.
Rahman
,
Phys. Rev.
136
,
A405
(
1964
).
22.
P.
Chaudhuri
,
L.
Berthier
, and
W.
Kob
,
Phys. Rev. Lett.
99
,
060604
(
2007
).
23.
M. D.
Ediger
,
Annu. Rev. Phys. Chem.
51
,
99
(
2000
);
[PubMed]
S. C.
Glotzer
,
J. Non-Cryst. Solids
274
,
342
(
2000
).
24.
Dynamical Heterogeneities in Glasses, Colloids and Granular Materials
, edited by
L.
Berthier
, et al
(
Oxford University Press
,
2011
).
25.
M. P.
Lettinga
and
E.
Grelet
,
Phys. Rev. Lett.
99
,
197802
(
2007
).
26.

It is worth noting that the work by A. Patti et al., Phys. Rev. Lett. 103, 248304 (2009), that postdated Ref. 10, actually claims that chain-like clusters of rod-like particles moving across the layers would contribute to the translational diffusive dynamics along the director in a smectic phase, thus attempting to stretch the analogy between an equilibrium smectic liquid-crystal and a non-equilibrium glass forming fluid. The stringent dynamical criterion adopted in Ref. 10 did not indicate this, however, but rather pointed to the translational diffusive dynamics along the director in a smectic phase essentially remaining an individual process.

You do not currently have access to this content.