Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)3ϵ, where a is the sphere radius, R the average inter-sphere separation, and ϵ the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.

1.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic Press, New York
,
1992
).
2.
S. R.
Waitukaitis
,
V.
Lee
,
J. M.
Pierson
,
S. L.
Forman
, and
H. M.
Jaeger
,
Phys. Rev. Lett.
112
,
218001
(
2014
).
3.
J. W.
Merrill
,
S. K.
Sainis
, and
E. R.
Dufresne
,
Phys. Rev. Lett.
103
,
138301
(
2009
).
4.
D. V.
Talapin
,
E. V.
Shevchenko
,
M. I.
Bodnarchuk
,
X.
Ye
,
J.
Chen
, and
C. B.
Murray
,
Nature
461
,
964
(
2009
).
5.
R.
Wang
and
Z.-G.
Wang
,
Phys. Rev. Lett.
112
,
136101
(
2014
).
6.
L. M.
Hall
,
M. E.
Seitz
,
K. I.
Winey
,
K. L.
Opper
,
K. B.
Wagener
,
M. J.
Stevens
, and
A. L.
Frischknecht
,
J. Am. Chem. Soc.
134
,
574
(
2012
).
7.
K.
Barros
and
E.
Luijten
,
Phys. Rev. Lett.
113
,
017801
(
2014
).
8.
K.
Barros
,
D.
Sinkovits
, and
E.
Luijten
,
J. Chem. Phys.
140
,
064903
(
2014
).
9.
K. F.
Freed
,
J. Chem. Phys.
141
,
034115
(
2014
).
10.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
1998
).
11.
A. A.
Kornyshev
,
A. I.
Rubinshtein
, and
M. A.
Vorotyntsev
,
J. Phys. C: Solid State Phys.
11
,
3307
(
1978
).
12.
A. A.
Kornyshev
,
J. Phys. C: Solid State Phys.
11
,
3323
(
1978
).
13.
A. A.
Kornyshev
and
M. A.
Vorotyntsev
,
J. Phys. C: Solid State Phys.
12
,
4939
(
1979
).
14.
A.
Hildebrandt
,
R.
Blossey
,
S.
Rjasanow
,
O.
Kohlbacher
, and
H.-P.
Lenhof
,
Phys. Rev. Lett.
93
,
108104
(
2004
).
15.
C.
Neumann
,
Hydrodynamische Untersuchen nebst einem Anhang uber die Probleme der Elecktrostatik und der Magnetischen Induktion
(
Teubner, Leipzig
,
1883
), pp.
279
282
.
16.
I. V.
Lindell
,
Am. J. Phys.
61
,
39
(
1993
).
17.
W.
Cai
,
S.
Deng
, and
D.
Jacobs
,
J. Comput. Phys.
223
,
846
(
2007
).
18.
Z.
Xu
,
Interdiscip. Sci. Comput. Life Sci.
4
,
19
(
2012
).
19.
Z.
Gan
,
S.
Jiang
,
E.
Luijten
, and
Z.
Xu
,
SIAM J. Sci. Comput.
38
,
375
(
2016
).
20.
N.
Bjerrum
,
Z. Physik. Chem.
119
,
145
(
1926
).
21.
N. C.
Pyper
,
C. G.
Pike
, and
P. P.
Edwards
,
Mol. Phys.
76
,
353
(
1992
).
22.
J.
Qin
,
J.
Li
,
V.
Lee
,
H. M.
Jaeger
,
J. J.
de Pablo
, and
K. F.
Freed
,
J. Colloid Interface Sci.
469
,
237
(
2016
).
You do not currently have access to this content.