We investigate ionization at a solid-water interface in an applied electric field. We attach an electrode to a dielectric film bearing silanol or carboxyl groups with an areal density Γ0, where the degree of dissociation α is determined by the proton density in water close to the film. We show how α depends on the density n0 of NaOH in water and the surface charge density σm on the electrode. For σm > 0, the protons are expelled away from the film, leading to an increase in α. In particular, in the range 0 < σm < eΓ0, self-regulation occurs to realize ασm/eΓ0 for n0nc, where nc is 0.01 mol/L for silica surfaces and is 2 × 10−5 mol/L for carboxyl-bearing surfaces. We also examine the charge regulation with decreasing the cell thickness H below the Debye length κ−1, where a crossover occurs at the Gouy-Chapman length. In particular, when σmeΓ0 and Hκ−1, the surface charges remain only partially screened by ions, leading to a nonvanishing electric field in the interior.

1.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
(
Academic Press
,
London
,
1991
).
2.
R. J.
Hunter
,
Foundations of Colloid Science
(
Oxford University Press
,
Oxford
,
2001
), Chap.10.
3.
H.
Ohshima
,
Theory of Colloid and Interfacial Electric Phenomena
(
Elsevier
,
New York
,
2006
).
4.
H.-J.
Butt
,
K.
Graf
, and
M.
Kappl
,
Physics and Chemistry of Interfaces
, 3rd ed. (
Wiley-VCH Verlag GmbH
,
Weinheim
,
2013
).
5.
D.
Ben-Yaakov
,
D.
Andelman
,
R.
Podgornik
, and
D.
Harries
,
Curr. Opin. Colloid Interface Sci.
16
,
542
(
2011
).
6.
T. W.
Healy
and
D. W.
Fuerstenau
,
J. Colloid Sci.
20
,
376
(
1965
).
7.
J.
Westall
and
H.
Hohl
,
Adv. Colloid Interface Sci.
12
,
265
(
1980
).
8.
T.
Hiemstra
,
J. C. M.
de Wit
, and
W. H.
van Riemsdijk
,
J. Colloid Interface Sci.
133
,
105
(
1989
).
9.
K. F.
Hayes
,
G.
Redden
,
W.
Ela
, and
J. O.
Leckie
,
J. Colloid Interface Sci.
142
,
448
(
1991
).
10.
J. J.
Sonnefeld
,
J. Colloid Interface Sci.
155
,
191
(
1993
).
11.
R. E. G.
van Hal
,
J. C. T.
Eijkel
, and
P.
Bergveld
,
Adv. Colloid Interface Sci.
69
,
31
(
1996
).
12.
J. N.
Israelachvili
and
R. M.
Pashley
,
J. Colloid Interface Sci.
98
,
500
(
1984
).
14.
C.
Zhao
,
D.
Ebeling
,
I.
Siretanu
,
D.
van den Ende
, and
F.
Mugele
,
Nanoscale
7
,
16298
(
2015
).
15.
G.
Trefalt
,
S. H.
Behrens
, and
M.
Borkovec
,
Langmuir
32
,
380
(
2016
).
16.
B. W.
Ninham
and
V. A.
Parsegian
,
J. Theor. Biol.
31
,
405428
(
1971
).
17.
D. Y. C.
Chan
,
T. W.
Healy
, and
L. R.
White
,
J. Chem. Soc., Faraday Trans. 1
172
,
2844
(
1976
).
18.
S. H.
Behrens
and
M.
Borkovec
,
J. Phys. Chem. B
103
,
2918
(
1999
);
S. H.
Behrens
and
M.
Borkovec
,
Phys. Rev. E
60
,
7040
(
1999
).
19.
S. H.
Behrens
,
D.
Iso Christl
,
R.
Emmerzael
,
P.
Schurtenberger
, and
M.
Borkovec
,
Langmuir
16
,
2566
(
2000
).
20.
S. H.
Behrens
and
D. G.
Grier
,
J. Chem. Phys.
115
,
6716
(
2001
).
21.
P. W.
Biesheuvel
and
W. B. S.
de Lint
,
J. Colloid Interface Sci.
241
,
422
(
2001
);
P. M.
Biesheuvel
,
Langmuir
17
,
3553
(
2001
).
22.
M.
Heinen
,
T.
Palberg
, and
H.
Löwen
,
J. Chem. Phys.
140
,
124904
(
2014
).
23.
T.
Markovich
,
D.
Andelman
, and
R.
Podgornik
,
Europhys. Lett.
113
,
26004
(
2016
), Their expression for Πdin the Ninham-Parsegian regime is obtained if n OH 0 / n H 0 = ( n OH 0 ) 2 / K w in our expression in Eq. (73) is replaced by 1.
24.
M.
Eigen
and
L.
De Maeyer
,
Proc. R. Soc. London, Ser. A
247
,
505
(
1958
);
M.
Eigen
,
Angew. Chem., Int. Ed. Engl.
3
,
1
(
1964
).
25.
T.
Gisler
,
S. F.
Schulz
,
M.
Borkovec
,
H.
Sticher
,
P.
Schurtenberger
,
B.
D’Aguanno
, and
R.
Klein
,
J. Chem. Phys.
101
,
9924
(
1994
).
26.
R.
Pericet-Camara
,
G.
Papastavrou
,
S. H.
Behrens
, and
M.
Borkovec
,
J. Phys. Chem. B
108
,
19467
(
2004
).
27.
J.
Yamanaka
,
Y.
Hayashi
,
N.
Ise
, and
T.
Yamaguchi
,
Phys. Rev. E
55
,
3028
(
1997
).
28.
M.
Murai
,
H.
Yamada
,
J.
Yamanaka
,
S.
Onda
,
M.
Yonese
,
K.
Ito
,
T.
Sawada
,
F.
Uchida
, and
Y.
Ohki
,
Langmuir
23
,
7510
(
2007
).
29.
D.
Andelman
, “
Introduction to electrostatics in soft and biological matter
,” in
Soft Condensed Matter Physics in Molecular and Cell Biology
, edited by
W.
Poon
and
D.
Andelman
,
Scottish Graduate Series
(
Taylor & Francis
,
New York
,
2006
), p.
97
.
30.
31.
A.
Onuki
,
R.
Okamoto
, and
T.
Araki
,
Bull. Chem. Soc. Jpn.
84
,
284113
(
2011
).
32.
R.
Okamoto
and
A.
Onuki
,
Phys. Rev. E
84
,
051401
(
2011
).
33.
E.
Raphael
and
J. F.
Joanny
,
Europhys. Lett.
13
,
623
(
1990
).
34.
I.
Borukhov
,
D.
Andelman
, and
H.
Orland
,
Eur. Phys. J. B
5
,
869
(
1998
).
35.
Y.
Burak
and
R. R.
Netz
,
J. Phys. Chem. B
108
,
4840
(
2004
).
36.
R.
Okamoto
and
A.
Onuki
,
J. Chem. Phys.
131
,
094905
(
2009
).
37.
A.
Onuki
and
R.
Okamoto
,
J. Phys. Chem. B
113
,
3988
(
2009
).
38.
M.
Muthukumar
,
J. Chem. Phys.
120
,
9343
(
2004
);
[PubMed]
M.
Muthukumar
,
J.
Hua
, and
A.
Kundagrami
,
J. Chem. Phys.
132
,
084901
(
2010
).
[PubMed]
39.
G. S.
Longo
,
M. O.
de la Cruz
, and
I.
Szleifer
,
Soft Matter
8
,
1344
(
2012
).
41.
C. B.
Post
and
B. H.
Zimm
,
Biopolymers
21
,
2139
(
1982
);
[PubMed]
P. G.
Arscott
,
C.
Ma
,
J. R.
Wenner
, and
V. A.
Bloomfield
,
Biopolymers
36
,
345
(
1995
);
[PubMed]
A.
Hultgren
and
D. C.
Rau
,
Biochemistry
43
,
8272
(
2004
);
[PubMed]
C.
Stanley
and
D. C.
Rauy
,
Biophys. J.
91
,
912
(
2006
).
[PubMed]
42.
A. P.
dos Santos
and
Y.
Levin
,
J. Chem. Phys.
133
,
154107
(
2010
).
44.
J.
Hautman
,
J. W.
Halley
, and
Y.-J.
Rhee
,
J. Chem. Phys.
91
,
467
(
1989
).
45.
I.-C.
Yeh
and
M. L.
Berkowitz
,
J. Chem. Phys.
111
,
3155
(
1999
).
46.
P. S.
Crozier
,
R. L.
Rowley
, and
D.
Henderson
,
J. Chem. Phys.
113
,
9202
(
2000
).
47.
A. P.
Willard
,
S. K.
Reed
,
P. A.
Madden
, and
D.
Chandler
,
Faraday Discuss.
141
,
423
(
2009
).
48.
K.
Takae
and
A.
Onuki
,
J. Phys. Chem. B
119
,
9377
(
2015
);
[PubMed]
K.
Takae
and
A.
Onuki
,
J. Chem. Phys.
143
,
154503
(
2015
).
[PubMed]
49.

As the Stern potential drop, we find the expression V0S=4π0d0dz[PbP(z)], where Pb = (ε0 − 1) E(d0)/4π is the bulk polarization close to the bottom Stern layer.48 Here, P(z) can be nonvanishing even for Pb = 0 due to the molecular orientation, leading to an intrinsic potential drop.

50.
L. D.
Landau
and
E. M.
Lifshitz
,
Electrodynamics of Continuous Media
(
Pergamon
,
New York
,
1984
), Vol.
8
.
51.
L.
Onsager
and
N. N. T.
Samaras
,
J. Chem. Phys.
2
,
528
(
1934
).
52.
M.
Kanduč
and
R.
Podgornik
,
Eur. Phys. J. E
23
,
265
(
2007
).
53.
A. P.
dos Santos
and
Y.
Levin
,
Soft Matter
9
,
10545
(
2013
).
54.
D.
Klarman
and
D.
Andelman
,
Langmuir
27
,
6031
(
2011
).
55.
F.
Mugele
and
J. C.
Baret
,
J. Phys.: Condens. Matter
17
,
R705
(
2005
).
56.
R.
Okamoto
and
A.
Onuki
,
Phys. Rev. E
88
,
022309
(
2013
).
57.
K.
Aoki
,
T.
Li
,
J.
Chen
, and
T.
Nishiumi
,
J. Electroanal. Chem.
613
,
1
(
2008
);
K.
Aoki
,
T.
Li
,
J.
Chen
, and
T.
Nishiumi
,
J. Electroanal. Chem.
633
,
319
(
2009
).
58.

Setting Πd = 0, we solve Eq. (41) for u < 0 and s > 0 exactly as tanh(U/4) = − Cexp[κ(zd0)]. For A1|u| ≫ 1 we have C ≅ 1 + 1/A1|u| and s(|u| − α) ≅ α/2A1κH′. Then, sα for H′ > 1/A1ακ = ℓGC.

59.
A.
Onuki
,
Phase Transition Dynamics
(
Cambridge University Press
,
Cambridge
,
2002
), see Appendix 6A in this book.
60.
M. Z.
Bazant
,
M. S.
Kilic
,
B. D.
Storey
, and
A.
Ajdari
,
Adv. Colloid Interface Sci.
152
,
48
(
2009
).
You do not currently have access to this content.