Ice friction plays an important role in many engineering applications, e.g., tires on icy roads, ice breaker ship motion, or winter sports equipment. Although numerous experiments have already been performed to understand the effect of various conditions on ice friction, to reveal the fundamental frictional mechanisms is still a challenging task. This study uses in situ white light interferometry to analyze ice surface topography during linear friction testing with a rubber slider. The method helps to provide an understanding of the link between changes in the surface topography and the friction coefficient through direct visualization and quantitative measurement of the morphologies of the ice surface at different length scales. Besides surface polishing and scratching, it was found that ice melts locally even after one sweep showing the refrozen droplets. A multi-scale rubber friction theory was also applied to study the contribution of viscoelasticity to the total friction coefficient, which showed a significant level with respect to the smoothness of the ice; furthermore, the theory also confirmed the possibility of local ice melting.

1.
WHO
,
Global Status Report on Road Safety 2013: Supporting a Decade of Action
(
World Health Organization
,
Geneva, Switzerland
,
2013
).
2.
W. R.
Chang
and
T. K.
Courtney
,
Measuring Slipperiness: Human Locomotion and Surface Factors
(
Taylor & Francis
,
2003
).
3.
M.
Faraday
, “
Note on regelation
,”
Proc. R. Soc. London
10
,
440
450
(
1859
).
4.
R.
Rosenberg
, “
Why is ice slippery?
,”
Phys. Today
58
(
12
),
50
55
(
2005
).
5.
J. R.
Blackford
,
G.
Skouvaklis
,
M.
Purser
, and
V.
Koutsos
, “
Friction on ice: Stick and slip
,”
Faraday Discuss.
156
,
243
254
(
2012
).
6.
F. P.
Bowden
and
T.
Hughes
, “
The mechanism of sliding on ice and snow
,”
Proc. R. Soc. A
172
,
280
298
(
1939
).
7.
B. N. J.
Persson
, “
Theory of rubber friction and contact mechanics
,”
J. Chem. Phys.
115
,
3840
3861
(
2001
).
8.
M.
Klüppel
and
G.
Heinrich
, “
Rubber friction on self-affine road tracks
,”
Rubber Chem. Technol.
73
(
4
),
578
606
(
2000
).
9.
K.
Grosch
, “
The relation between the friction and visco-elastic propeties of rubber
,”
Proc. R. Soc. A
274
,
21
39
(
1963
).
10.
M.
Rantonen
,
A. J.
Tuononen
, and
P.
Sainio
,
Int. J. Veh. Syst. Modell. Test
7
,
194
(
2012
).
11.
A.
Kriston
,
N. A.
Isitman
,
T.
Fülöp
, and
A. J.
Tuononen
, “
Structural evolution and wear of ice surface during rubber-ice contact
,”
Tribol. Int.
93
,
257
268
(
2016
).
12.
Lahayne
 et al, “
Rubber friction on ice: Experiments and modeling
,”
Tribol. Lett.
62
(
17
)
1
19
(
2016
).
13.
P.
Barnes
,
D.
Tabor
, and
J.
Walker
, “
The friction and creep of polycrystalline ice
,”
Proc. R. Soc. London, Ser. A
324
(
1557
),
127
155
(
1971
).
14.
T.
Huemer
,
W.
Liu
,
J.
Eberhardsteiner
, and
H.
Mang
, “
A 3D finite element formulation describing the frictional behaviour of rubber on ice and concrete surfaces
,”
Eng. Comput.
18
(
3/4
),
417
436
(
2001
).
15.
G.
Sazaki
,
S.
Zepeda
,
S.
Nakatsubo
,
M.
Yokomine
, and
Y.
Furukawa
, “
Quasi-liquid layers on ice crystal surfaces are made up of two different phases
,”
Proc. Natl. Acad. Sci. U. S. A.
109
(
4
),
1052
1055
(
2012
).
16.
Pittenger
 et al, “
Premelting at ice-solid interfaces studied via velocity-dependent indentation with force microscope tips
,”
Phys. Rev. B
63
,
134102
(
2001
).
17.
Y.
Li
and
G. A.
Somorjai
, “
Surface premelting of ice
,”
J. Phys. Chem. C
111
(
27
),
9631
9637
(
2007
).
18.
D.
Higgins
,
B.
Marmo
,
C.
Jeffree
,
V.
Koutsos
, and
J.
Blackford
, “
Morphology of ice wear from rubber–ice friction tests and its dependence on temperature and sliding velocity
,”
Wear
265
(
5-6
),
634
644
(
2008
).
19.
Engemann
 et al, “
Interfacial melting of ice in contact with SiO2
,”
Phys. Rev. Lett.
92
,
205701-1
(
2004
).
20.
T.
Fülöp
and
A. J.
Tuononen
, “
Evolution of ice surface under a sliding rubber block
,”
Wear
307
,
52
59
(
2013
).
21.
B. N. J.
Persson
,
O.
Albohr
,
U.
Tartaglino
,
A. I.
Volokitin
, and
E.
Tosatti
, “
On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion
,”
J. Phys.: Condens. Matter
17
,
R1
R62
(
2004
).
22.
B. N. J.
Persson
, “
Fluid dynamics at the interface between contacting elastic solids with randomly rough surfaces
,”
J. Phys.: Condens. Matter
22
,
265004
(
2010
).
23.
A.
Kriston
,
T.
Fülöp
,
N. A.
Isitman
,
O.
Kotecký
, and
A. J.
Tuononen
, “
A novel method for contact analysis of rubber and various surfaces using micro-computerized-tomography
,”
Polym. Test.
53
,
132
142
(
2016
).
24.
M.
Scaraggi
and
B. N. J.
Persson
, “
Friction and universal contact area law for randomly rough viscoelastic contacts
,”
J. Phys.: Condens. Matter
27
,
105102
(
2015
).
25.
L.
Bäurle
, “
Sliding friction of polyethylene on snow and ice
,” Doctoral dissertation (
ETH Zurich
,
2006
).
26.
P.
Oksanen
and
J.
Keinonen
, “
Mechanism of friction of ice
,”
Wear
78
,
315
324
(
1982
).
27.
C.
Klapproth
,
T. M.
Kessel
,
K.
Wiese
, and
B.
Wies
, “
An advanced viscous model for rubber–ice-friction
,”
Tribol. Int.
99
,
169
181
(
2016
).
28.
A.
Schallamach
, “
Theory of dynamic rubber friction
,”
Wear
6
,
375
382
(
1963
).
29.
B. N. J.
Persson
, “
Ice friction: Role of non-uniform frictional heating and ice premelting
,”
J. Chem. Phys.
143
,
224701
(
2015
).
30.
G.
Fortunato
,
V.
Ciaravola
,
A.
Furno
,
B.
Lorenz
, and
B. N. J.
Persson
, “
General theory of frictional heating with application to rubber friction
,”
J. Phys.: Condens. Matter
27
(
17
),
175008
(
2015
).
31.
B.
Lishman
,
P. R.
Sammonds
, and
D. L.
Feltham
, “
Critical slip and time dependence in sea ice friction
,”
Cold Reg. Sci. Technol.
90-91
,
9
13
(
2013
).
32.
E. M.
Schulson
and
A. L.
Fortt
, “
Static strengthening of frictional surfaces of ice
,”
Acta Mater.
61
,
1616
1623
(
2013
).
33.
J. M.
Isomaa
,
A. J.
Tuononen
, and
S.
Bossuyt
, “
Onset of frictional sliding in rubber ice contact
,”
Cold Reg. Sci. Technol.
115
,
1
8
(
2015
).
34.
E. M.
Schulson
and
A. L.
Fortt
, “
Friction of ice on ice
,”
J. Geophys. Res.: Solid Earth
117
,
1
18
, doi:10.1029/2012JB009219 (
2012
).
35.
A. J.
Tuononen
, “
Onset of frictional sliding of rubber–glass contact under dry and lubricated conditions
,”
Sci. Rep.
6
,
27951
(
2016
).
36.
Y.
Bar-Sinai
,
R.
Spatschek
,
E. A.
Brener
, and
E.
Bouchbinder
, “
Velocity-strengthening friction significantly affects interfacial dynamics, strength and dissipation
,”
Sci. Rep.
5
,
7841
(
2015
).
37.
B.
Lorenz
and
B. N. J.
Persson
, “
Master curve of viscoelastic solid: Using causality to determine the optimal shifting procedure, and to test the accuracy of measured data
,”
Polymer
55
,
565
571
(
2014
).
38.
B. N. J.
Persson
, “
On the fractal dimension of rough surfaces
,”
Tribol. Lett.
54
(
1
),
99
106
(
2014
).
39.
B. N. J.
Persson
, “
Rubber friction: Role of the flash temperature
,”
J. Phys.: Condens. Matter
18
,
7789
7823
(
2006
).
You do not currently have access to this content.