Full 9-dimensional ab initio potential energy surfaces for the methane molecule are constructed using extended electronic structure coupled-cluster calculations with various series of basis sets following increasing X cardinal numbers: cc-pVXZ (X = 3, 4, 5, 6), aug-cc-ACVXZ (X = 3, 4, 5), and cc-pCVXZ-F12 (X = 3, 4). High-order dynamic electron correlations including triple and quadrupole excitations as well as relativistic and diagonal Born-Oppenheimer breakdown corrections were accounted for. Analytical potential functions are parametrized as non-polynomial expansions in internal coordinates in irreducible tensor representation. Vibrational energy levels are reported using global variational nuclear motion calculations with exact kinetic energy operator and a full account of the tetrahedral symmetry of CH4. Our best ab initio surface including above-mentioned contributions provides the rms (obs.-calc.) errors of less than 0.11 cm−1 for vibrational band centers below 4700 cm−1, and ∼0.3 cm−1 for all 229 assigned experimentally determined vibrational levels up to the Icosad range <7900 cm−1 without empirically adjusted parameters. These results improve the accuracy of ab initio methane vibrational predictions by more than an order of magnitude with respect to previous works. This is an unprecedented accuracy of first-principles calculations of a five-atomic molecule for such a large data set. New ab initio potential results in significantly better band center predictions even in comparison with best available empirically corrected potential energy surfaces. The issues related to the basis set extrapolation and an additivity of various corrections at this level of accuracy are discussed.

1.
M.
Quack
and
J.
Troe
,
Ber. Bunsenges. Phys. Chem.
81
,
329
(
1977
).
2.
T.
Nishimura
and
F. A.
Gianturco
,
Phys. Rev. A
65
,
062703
(
2002
).
3.
H.
Schwarz
,
Angew. Chem., Int. Ed.
50
,
10096
10115
(
2011
).
4.
E.
Jourdanneau
,
T.
Gabard
,
F.
Chaussard
,
R.
Saint-Loup
,
H.
Berger
,
E.
Bertseva
, and
F.
Grisch
,
J. Mol. Spectrosc.
246
,
167
(
2007
).
5.
C.
Sagan
,
R. W.
Thompson
,
R.
Carlson
,
D.
Gurnett
, and
C.
Hord
,
Nature
365
,
715
(
1993
).
6.
G. C.
Rhoderick
and
W. D.
Dorko
,
Environ. Sci. Technol.
38
,
2685
(
2004
).
7.
D. J.
Nesbitt
and
R. W.
Field
,
J. Phys. Chem.
100
,
12735
(
1996
).
8.
M.
Khalil
,
Annu. Rev. Energy Environ.
24
,
645
661
(
1999
).
9.
O.
Boucher
,
P.
Friedlingstein
,
B.
Collins
, and
K. P.
Shine
,
Environ. Res. Lett.
4
,
044007
(
2009
).
10.
G.
Tinetti
,
T.
Encrenaz
, and
A.
Coustenis
,
Astron. Astrophys. Rev.
21
,
63
(
2013
).
11.
C.
De Bergh
 et al,
Planet. Space Sci.
61
,
85
98
(
2012
).
12.
M.
Hirtzig
 et al,
Icarus
226
,
470
486
(
2013
).
13.
F.
Allard
,
P. H.
Hauschildt
,
D. R.
Alexander
, and
S.
Starrfield
,
Annu. Rev. Astron. Astrophys.
35
,
137
(
1997
).
14.
B. R.
Oppenheimer
,
S. R.
Kulkarni
,
K.
Matthews
, and
T.
Nakajima
,
Science
270
,
1478
(
1995
).
15.
M. R.
Swain
,
G.
Vasisht
, and
G.
Tinetti
,
Nature
452
,
329
333
(
2008
).
16.
R.
Hu
and
S.
Seager
,
Astrophys. J.
784
,
1
(
2014
).
17.
B.
Macintosh
,
J. R.
Graham
, and
T.
Barman
,
Science
350
,
64
67
(
2015
).
18.
S. L.
Mielke
and
D. G.
Truhlar
,
J. Chem. Phys.
142
,
044105
(
2015
).
19.
P. F.
Bernath
,
Philos. Trans. R. Soc., A
372
,
20130087
(
2014
).
20.
I. P.
Waldmann
,
G.
Tinetti
,
P.
Drossart
,
M. R.
Swain
,
P.
Deroo
, and
C. A.
Griffith
,
Astrophys. J.
744
,
35
(
2012
).
21.
A. V.
Nikitin
,
V.
Boudon
,
Ch.
Wenger
,
S.
Albert
,
L. R.
Brown
,
S.
Bauerecker
, and
M.
Quack
,
Phys. Chem. Chem. Phys.
15
,
10071
10093
(
2013
).
22.
Vl. G.
Tyuterev
,
R. V.
Kochanov
,
S. A.
Tashkun
,
F.
Holka
, and
P. G.
Szalay
,
J. Chem. Phys.
139
,
134307
(
2013
).
23.
M.
Rey
,
A. V.
Nikitin
, and
Vl. G.
Tyuterev
,
Phys. Chem. Chem. Phys.
15
,
10049
10061
(
2013
).
24.
M.
Rey
,
A. V.
Nikitin
 et al,
Phys. Chem.Chem. Phys.
18
,
176
189
(
2016
).
25.
S.
Albert
,
S.
Bauerecker
,
V.
Boudon
,
L. R.
Brown
,
J.-P.
Champion
,
M.
Loete
,
A. V.
Nikitin
, and
M.
Quack
,
Chem. Phys.
358
,
131
146
(
2009
).
26.
L.
Daumont
 et al,
J. Quant. Spectrosc. Radiat. Transfer
116
,
101
109
(
2013
).
27.
A. V.
Nikitin
,
M.
Rey
,
S. A.
Tashkun
,
S.
Kassi
,
D.
Mondelain
,
A.
Campargue
 et al,
J. Quant. Spectrosc. Radiat. Transfer
168
,
207
216
(
2016
).
28.
A. V.
Nikitin
,
J. P.
Champion
,
Vl. G.
Tyuterev
,
L. R.
Brown
,
G.
Mellau
, and
M.
Lock
,
J. Mol. Struct.
517-518
,
1
24
(
2000
).
29.
H.-M.
Niederer
,
S.
Albert
,
S.
Bauerecker
,
V.
Boudon
,
J.-P.
Champion
, and
M.
Quack
,
Chimia
62
,
273
276
(
2008
).
30.
A. V.
Nikitin
,
J.-P.
Champion
, and
L. R.
Brown
,
J. Mol. Spectrosc.
240
,
14
25
(
2006
).
31.
L. R.
Brown
 et al,
J. Quant. Spectrosc. Radiat. Transfer
174
,
88
100
(
2016
).
32.
E.
Starikova
,
A. V.
Nikitin
,
M.
Rey
,
S. A.
Tashkun
,
D.
Mondelain
,
S.
Kassi
,
A.
Campargue
, and
Vl. G.
Tyuterev
,
J. Quant. Spectrosc. Radiat. Transfer
177
,
170
(
2015
).
33.
V. I.
Perevalov
,
Vl. G.
Tyuterev
, and
B. I.
Zhilinskii
,
Chem. Phys. Lett.
104
,
455
461
(
1984
).
34.
V. I.
Perevalov
,
Vl. G.
Tyuterev
, and
B. I.
Zhilinskii
,
J. Mol. Spectrosc.
111
,
1
19
(
1985
).
35.
R.
Nassar
and
P.
Bernath
,
J. Quant. Spectrosc. Radiat. Transfer
82
,
279
282
(
2003
).
36.
J.
Thievin
,
R.
Georges
,
S.
Carles
,
B.
Abdessamad
,
B.
Rowe
, and
J. P.
Champion
,
J. Quant. Spectrosc. Radiat. Transfer
109
,
2027
(
2008
).
37.
R. J.
Hargreaves
,
C. A.
Beale
,
L.
Michaux
,
M.
Irfan
, and
P. F.
Bernath
,
Astrophys. J.
757
,
46
(
2012
).
38.
R. J.
Hargreaves
,
P. F.
Bernath
, and
D. R. T.
Appadoo
,
J. Mol. Spectrosc.
315
,
102
(
2015
).
39.
B.
Amyay
,
M.
Louviot
,
O.
Pirali
,
R.
Georges
,
J.
Vander Auwera
, and
V.
Boudon
,
J. Chem. Phys.
144
,
024312
(
2016
).
40.
D. N.
Kozlov
,
D. A.
Sadovskii
, and
P. P.
Radi
,
J. Mol. Spectrosc.
291
,
23
32
(
2013
).
41.
O. N.
Ulenikov
,
E. S.
Bekhtereva
,
S.
Albert
,
S.
Bauerecker
,
H. M.
Niederer
, and
M.
Quack
,
J. Chem. Phys.
141
,
234302
(
2014
).
42.
L. R.
Brown
 et al,
J. Quant. Spectrosc. Radiat. Transfer
130
,
201
219
(
2013
).
43.
H.
Partridge
and
D. W.
Schwenke
,
J. Chem. Phys.
106
,
4618
4639
(
1997
).
44.
O. L.
Polyansky
,
N. F.
Zobov
,
S.
Viti
,
J.
Tennyson
,
P. F.
Bernath
, and
L.
Wallace
,
Science
277
,
346
348
(
1997
).
45.
J.
Tennyson
,
P.
Barletta
,
M. A.
Kostin
,
O. L.
Polyansky
, and
N. F.
Zobov
,
Spectrochim. Acta, Part A
58
,
663
672
(
2002
).
46.
O.
Polyansky
,
R.
Ovsyannikov
,
A.
Kyuberis
,
L.
Lodi
,
J.
Tennyson
, and
N.
Zobov
,
J. Phys. Chem. A
117
,
9633
9643
(
2013
).
47.
X.
Huang
,
D. W.
Schwenke
,
S. A.
Tashkun
 et al,
J. Chem. Phys.
136
,
124311
(
2012
).
48.
X.
Huang
,
R. S.
Freedman
,
S. A.
Tashkun
,
D. W.
Schwenke
, and
T. J.
Lee
,
J. Quant. Spectrosc. Radiat. Transfer
139
,
134
146
(
2013
).
49.
S. N.
Yurchenko
,
R. J.
Barber
,
A.
Yachmenev
,
W.
Thiel
,
P.
Jensen
, and
J.
Tennyson
,
J. Phys. Chem. A
113
,
11845
11855
(
2009
).
50.
T.
Cours
,
P.
Rosmus
, and
Vl. G.
Tyuterev
,
J. Chem. Phys.
117
,
5192
(
2002
).
51.
A. A.
Azzam
,
L.
Lodi
,
S. N.
Yurchenko
, and
J.
Tennyson
,
J. Quant. Spectrosc. Radiat. Transfer
161
,
41
49
(
2015
).
52.
D. W.
Schwenke
,
T. J.
Lee
, and
X. C.
Huang
,
J. Chem. Phys.
140
,
114311
(
2014
).
53.
A.
Campargue
,
A.
Barbe
,
M. R.
De Backer-Barilly
,
Vl. G.
Tyuterev
, and
S.
Kassi
,
Phys. Chem. Chem. Phys.
10
,
2925
2946
(
2008
).
54.
Vl. G.
Tyuterev
,
R. V.
Kochanov
,
A.
Campargue
,
S.
Kassi
,
D.
Mondelain
, and
A.
Barbe
,
Phys. Rev. Lett.
113
,
143002
(
2014
).
55.
R.
Dawes
,
P.
Lolur
,
J.
Ma
, and
H.
Guo
,
J. Chem. Phys.
135
,
081102
(
2011
).
56.
X.
Huang
,
D. W.
Schwenke
, and
T. J.
Lee
,
J. Chem. Phys.
134
,
044320
(
2011
).
57.
S. N.
Yurchenko
,
M.
Carvajal
,
W.
Thiel
, and
P.
Jensen
,
J. Mol. Spectrosc.
239
,
71
87
(
2006
).
58.
C.
Sousa-Silva
,
S. N.
Yurchenko
, and
J.
Tennison
,
J. Mol. Spectrosc.
288
,
28
36
(
2013
).
59.
A. V.
Nikitin
,
M.
Rey
, and
Vl. G.
Tyuterev
,
J. Mol. Spectrosc.
305
,
40
47
(
2014
).
60.
A.
Owens
,
S. N.
Yurchenko
,
A.
Yachmenev
,
J.
Tennyson
, and
W.
Thiel
,
J. Chem. Phys.
142
,
244306
(
2015
).
61.
A.
Owens
,
S. N.
Yurchenko
,
A.
Yachmenev
, and
W.
Thiel
,
J. Chem. Phys.
143
,
244317
(
2015
).
62.
T.
Delahaye
,
A.
Nikitin
,
M.
Rey
,
P.
Szalay
, and
Vl. G.
Tyuterev
,
J. Chem. Phys.
141
,
104301
(
2014
).
63.
T.
Delahaye
,
A. V.
Nikitin
,
M.
Rey
,
P. G.
Szalay
, and
Vl. G.
Tyuterev
,
Chem. Phys. Lett.
639
,
275
282
(
2015
).
64.
J.
Li
,
S.
Carter
,
J. M.
Bowman
,
R.
Dawes
,
D.
Xie
, and
H.
Guo
,
J. Phys. Chem. Lett.
5
,
2364
2369
(
2014
).
65.
L. M.
Raff
,
R.
Viswanathan
, and
D. L.
Thompson
,
J. Chem. Phys.
80
,
6141
(
1984
).
66.
S.
Brodersen
and
J. E.
Lolck
,
J. Mol. Spectrosc.
126
,
405
(
1987
).
67.
H.
Furue
,
J. F.
LeBlanc
,
P. D.
Pacey
, and
J. M.
Whalen
,
Chem. Phys.
154
,
425
(
1991
).
68.
M. J. T.
Jordan
and
R. G.
Gilbert
,
J. Chem. Phys.
102
,
5669
(
1995
).
69.
T. J.
Lee
,
J. M. L.
Martin
, and
P. R.
Taylor
,
J. Chem. Phys.
102
,
254
(
1995
).
70.
R.
Marquardt
and
M.
Quack
,
J. Phys. Chem.
108
,
3166
3181
(
2004
).
71.
D. W.
Schwenke
and
H.
Partridge
,
Spectrochim. Acta, Part A
57
,
887
895
(
2001
).
72.
A. V.
Nikitin
,
M.
Rey
, and
Vl. G.
Tyuterev
,
Chem. Phys. Lett.
501
,
179
186
(
2011
).
73.
M.
Majumder
,
S. E.
Hegger
,
R.
Dawes
,
S.
Manzhos
,
X.-G.
Wang
,
T.
Carrington
, Jr.
,
J.
Lid
, and
H.
Guo
,
Mol. Phys.
113
,
1823
1833
(
2015
).
74.
P.
Cassam-Chenai
and
J.
Lievin
,
J. Chem. Phys.
136
,
174309
(
2012
).
75.
S. N.
Yurchenko
,
J.
Tennyson
,
R. J.
Barber
, and
W.
Thiel
,
J. Mol. Spectrosc.
291
,
69
76
(
2013
).
76.
A. V.
Nikitin
,
M.
Rey
, and
Vl. G.
Tyuterev
,
Chem. Phys. Lett.
565
,
5
11
(
2013
).
77.
R.
Marquardt
and
M.
Quack
,
J. Chem. Phys.
109
,
10628
(
1998
).
78.
M.
Lewerenz
and
M.
Quack
,
J. Chem. Phys.
88
,
5408
5432
(
1988
).
79.
M.
Lewerenz
,
R.
Marquardt
, and
M.
Quack
,
J. Chem. Soc., Faraday.Trans.
84
,
1580
1583
(
1988
).
80.
D. W.
Schwenke
,
Spectrochim. Acta, Part A
58
,
849
861
(
2002
).
81.
X.
Wang
and
L.
Edwin Sibert
III
,
Spectrochim. Acta, Part A
58
,
863
872
(
2002
).
82.
J. M.
Bowman
,
T.
Carrington
, and
H.-D.
Meyer
,
Mol. Phys.
106
,
2145
(
2008
).
83.
E.
Matyus
,
J.
Simunek
, and
A.
Csaszar
,
J. Chem. Phys.
131
,
074106
(
2009
).
84.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
138
,
104106
(
2013
).
85.
C.
Oyanagi
,
K.
Yagi
,
T.
Taketsugu
, and
K.
Hirao
,
J. Chem. Phys.
124
,
064311
(
2006
).
86.
J.
Troe
,
Mol. Phys.
112
,
2374
2383
(
2014
).
87.
X.-G.
Wang
and
E. L.
Sibert
III
,
J. Chem. Phys.
111
,
4510
4522
(
1999
).
88.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
141
,
154106
(
2014
).
89.
S. N.
Yurchenko
and
J.
Tennyson
,
Mon. Not. R. Astron. Soc.
440
,
1649
1661
(
2014
).
90.
M.
Rey
,
A. V.
Nikitin
, and
Vl. G.
Tyuterev
,
J. Phys. Chem. A
119
,
4763
4779
(
2015
).
91.
M.
Rey
,
A. V.
Nikitin
, and
Vl. G.
Tyuterev
,
J. Mol. Spectrosc.
291
,
85
97
(
2013
).
92.
M.
Rey
,
A. V.
Nikitin
, and
Vl. G.
Tyuterev
,
J. Chem. Phys.
141
,
044316
(
2014
).
93.
M.
Rey
,
A. V.
Nikitin
, and
Vl. G.
Tyuterev
,
Astrophys. J.
789
,
2
(
2014
).
94.
M.
Rey
,
A. V.
Nikitin
,
Y.
Babikov
, and
Vl. G.
Tyuterev
,
J. Mol. Spectrosc.
327
,
138
158
(
2016
).
95.
R.
Warmbier
,
R.
Scheider
,
A. R.
Sharma
 et al,
Astron. Astrophys.
495
,
665
(
2009
).
96.
Ch.
Wenger
,
J. P.
Champion
, and
V.
Boudon
,
J. Quant. Spectrosc. Radiat. Transfer
109
,
2697
2706
(
2008
).
97.
A. V.
Nikitin
 et al,
J. Quant. Spectrosc. Radiat. Transfer
154
,
63
71
(
2015
).
98.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
99.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
100.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
127
,
221106
(
2007
).
101.
G.
Knizia
,
T.
Adler
, and
H.
Werner
,
J. Chem. Phys.
130
,
054104
(
2009
).
102.
J. G.
Hill
,
K. A.
Peterson
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
131
,
194105
(
2015
).
103.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
 et al,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
253
(
2012
).
104.
A. V.
Nikitin
,
F.
Holka
,
Vl. G.
Tyuterev
, and
J.
Fremont
,
J. Chem. Phys.
131
,
244312
(
2009
).
105.
M.
Reiher
and
A.
Wolf
,
J. Chem. Phys.
121
,
10945
(
2004
).
106.
R. D.
Cowan
and
D. C.
Griffin
,
J. Opt. Soc. Am.
66
,
1010
1014
(
1976
).
107.
W.
Kutzelnigg
,
Mol. Phys.
90
,
900
916
(
1997
).
108.
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
,
P. G.
Szalay
 et al, CFour program, http://www.cfour.de;
J.
Gauss
,
A.
Tajti
,
M.
Kallay
,
J. F.
Stanton
, and
P. G.
Szalay
,
J. Chem. Phys.
125
,
144111
(
2006
).
[PubMed]
109.
D. A.
Matthews
and
J. F. J. F.
Stanton
,
J. Chem. Phys.
142
,
064108
(
2015
);
[PubMed]
Y. J.
Bomble
,
J. F.
Stanton
,
M.
Kallay
, and
J.
Gauss
,
J. Chem. Phys.
123
,
054101
(
2005
).
[PubMed]
110.
M.
Kállay
and
P. R.
Surján
,
J. Chem. Phys.
115
,
2945
(
2001
);
Mrcc, a quantum chemical program suite written by M. Kallay, Z. Rolik, J. Csontos, I. Ladjanszki, L. Szegedy, B. Ladoczki, G. Samu, K. Petrov, M. Farkas, P. Nagy, D. Mester, and B. Hegely. See also Z. Rolik, L. Szegedy, I. Ladjanszki, B. Ladoczki, and M. Kallay, J. Chem. Phys.139, 094105 (2013), as well as: www.mrcc.hu.
111.
J. F.
Stanton
,
Mol. Phys.
97
,
841
845
(
1999
).
112.
A. V.
Nikitin
,
M.
Rey
, and
Vl. G.
Tyuterev
,
J. Chem. Phys.
142
,
094118
(
2015
).
113.
A. V.
Nikitin
,
J. P.
Champion
, and
Vl. G.
Tyuterev
,
J. Mol. Spectrosc.
182
,
72
84
(
1997
).
114.
J.-P.
Champion
,
M.
Loete
, and
G.
Pierre
,
Spectroscopy of the Earth’s Atmosphere and Interstellar Medium
(
Academic Press
,
San Diego
,
1992
).
115.
B. I.
Zhilinskii
,
V. I.
Perevalov
, and
Vl. G.
Tyuterev
,
Method of Irreducible Tensorial Operators in the Theory of Molecular Spectra
(
Nauka
,
Novosibirsk
,
1987
).
116.
V.
Boudon
,
J. P.
Champion
,
T.
Gabard
,
M.
Loete
,
F.
Michelot
,
G.
Pierre
 et al,
J. Mol. Spectrosc.
228
,
620
634
(
2004
).
117.
M.
Rey
,
A. V.
Nikitin
, and
Vl. G.
Tyuterev
,
J. Chem. Phys.
136
,
244106
(
2012
).
118.
D. A.
Sadovskii
and
B. I.
Zhilinskii
,
Mol. Phys.
65
,
109
128
(
1988
).
119.
D. A.
Sadovskii
,
B. I.
Zhilinskii
,
J. P.
Champion
, and
G.
Pierre
,
J. Chem. Phys.
92
,
1523
1537
(
1990
).
120.
Vl. G.
Tyuterev
,
S. A.
Tashkun
,
M.
Rey
,
R. V.
Kochanov
,
A. V.
Nikitin
, and
T.
Delahaye
,
J. Phys. Chem.
117
,
13779
13805
(
2013
).
121.
X. G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
121
,
2937
2954
(
2004
).
122.
S.
Carter
,
J. Chem. Phys.
110
,
8417
8423
(
1999
).
123.
S.
Carter
,
A. R.
Sharma
, and
J. M.
Bowman
,
J. Chem. Phys.
137
,
154301
(
2012
).
124.
J. K. G.
Watson
,
Mol. Phys.
15
,
479
(
1968
).
125.
H.-G.
Yu
,
J. Chem. Phys.
117
,
2030
2037
(
2002
).
126.
H.-G.
Yu
,
J. Chem. Phys.
121
,
6334
6340
(
2004
).
127.
M.
Rey
,
A. V.
Nikitin
, and
Vl. G.
Tyuterev
,
J. Quant. Spectrosc. Radiat. Transfer
164
,
207
220
(
2015
).
128.
A. V.
Nikitin
,
M.
Rey
,
J.-P.
Champion
, and
Vl. G.
Tyuterev
,
J. Quant. Spectrosc. Radiat. Transfer
113
,
1034
1042
(
2012
).
129.
M.
Rey
,
A. V.
Nikitin
, and
Vl. G.
Tyuterev
,
Mol. Phys.
108
,
2121
2135
(
2010
).
130.
Vl. G.
Tyuterev
and
V. I.
Perevalov
,
Chem. Phys. Lett.
74
,
494
502
(
1980
).
131.
W. G.
Harter
and
C. W.
Patterson
,
J. Chem. Phys.
80
,
4241
4261
(
1984
).
132.
P.
Cassam-Chenai
,
G.
Rousseau
,
A.
Ilmane
,
Y.
Bouret
, and
M.
Rey
,
J. Chem. Phys.
143
,
034107
(
2015
).
133.
A. V.
Nikitin
,
X.
Thomas
,
L.
Regalia
,
L.
Daumont
,
M.
Rey
,
S. A.
Tashkun
,
Vl. G.
Tyuterev
, and
L. R.
Brownc
,
J. Quant. Spectrosc. Radiat. Transfer
138
,
116
123
(
2014
).
134.
A. V.
Nikitin
,
X.
Thomas
,
L.
Regalia
,
L.
Daumont
,
P.
Von der Heyden
, and
Vl. G.
Tyuterev
,
J. Quant. Spectrosc. Radiat. Transfer
112
,
28
40
(
2011
).
135.
A. V.
Nikitin
 et al,
J. Quant. Spectrosc. Radiat. Transfer
111
,
2211
2224
(
2010
).
136.
J. M. L.
Martin
,
Chem. Phys. Lett.
259
,
669
678
(
1996
).
137.
D. G.
Truhlar
,
Chem. Phys. Lett.
294
,
45
(
1998
).
138.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
,
Chem. Phys. Lett.
302
,
437
446
(
1999
).
139.
D. W.
Schwenke
,
J. Chem. Phys.
122
,
014107
(
2005
).
140.
D. W.
Schwenke
,
J. Phys. Chem. A
105
,
2352
2360
(
2001
).
141.
W.
Kutzelnigg
,
Mol. Phys.
105
,
2627
2647
(
2007
).
142.
F.
Holka
,
P.
Szalay
,
J.
Fremont
,
M.
Rey
,
K.
Peterson
, and
Vl. G.
Tyuterev
,
J. Chem. Phys.
134
,
094306
(
2011
).
143.
L. G.
Diniz
,
N.
Kirnosov
,
A.
Alijah
,
J. R.
Mohallem
, and
L.
Adamowicz
,
J. Mol. Spectrosc.
322
,
22
28
(
2016
).
144.
A.
Alijah
,
J.
Fremont
, and
Vl. G.
Tyuterev
,
Phys. Rev. A
92
,
012704
(
2015
).

Supplementary Material

You do not currently have access to this content.