We report a joint experimental and theoretical study on the photoinitiated ultrafast dynamics of acrylonitrile (AN) and two methylated analogs: crotonitrile (CrN) and methacrylonitrile (MeAN). Time-resolved photoelectron spectroscopy (TRPES) and ab initio simulation are employed to discern the conical intersection mediated vibronic dynamics leading to relaxation to the ground electronic state. Each molecule is pumped with a femtosecond pulse at 200 nm and the ensuing wavepackets are probed by means of one and two photon ionization at 267 nm. The predominant vibrational motions involved in the de-excitation process, determined by ab initio trajectory simulations, are an initial twisting about the C=C axis followed by pyramidalization at a carbon atom. The decay of the time-resolved photoelectron signal for each molecule is characterized by exponential decay lifetimes for the passage back to the ground state of 60 ± 10, 86 ± 11, and 97 ± 9 fs for AN, CrN, and MeAN, respectively. As these results show, the excited state dynamics are sensitive to the choice of methylation site and the explanation for the observed trend may be found in the trajectory simulations. Specifically, since the pyramidalization motion leading to the conical intersection with the ground state is accompanied by the development of a partial negative charge at the central atom of the pyramidal group, the electron donation of the cyano group ensures that this occurs exclusively at the medial carbon atom. In this way, the donated electron density from the cyano group “directs” the wavepacket to a particular region of the intersection seam. The excellent agreement between the experimental and simulated TRPES spectra, the latter determined by employing trajectory simulations, demonstrates that this mechanistic picture is consistent with the spectroscopic results.

1.
H.
Okabe
and
V. H.
Dibeler
,
J. Chem. Phys.
59
,
2430
(
1973
).
2.
G. A.
West
and
M. J.
Berry
,
J. Chem. Phys.
61
,
4700
(
1974
).
3.
J. B.
Halpern
,
G. E.
Miller
,
H.
Okabe
, and
W.
Nottingham
,
J. Photochem. Photobiol. A
42
,
63
(
1987
).
4.
A.
Gandini
and
P. A.
Hackett
,
Can. J. Chem.
56
,
2096
(
1978
).
5.
W.-N.
Du
,
C.
Luo
, and
Z.-S.
Li
,
J. Chem. Phys.
129
,
174309
(
2008
).
6.
C. A.
Bird
and
D. J.
Donaldson
,
Chem. Phys. Lett.
249
,
40
(
1996
).
7.
C. Y.
Oh
,
S. K.
Shin
,
H. L.
Kim
, and
C. R.
Park
,
J. Phys. Chem. A
107
,
4333
(
2003
).
8.
P. A.
Mullen
and
M. K.
Orloff
,
Theor. Chim. Acta
23
,
278
(
1971
).
9.
F.
Motte-Tollet
,
D.
Messina
, and
M.-J.
Hubin-Franskin
,
J. Chem. Phys.
103
,
90
(
1995
).
10.
S.
Eden
,
P.
Limão-Vieira
,
P.
Kendall
,
N. J.
Mason
,
S. V.
Hoffmann
, and
S. M.
Spyrou
,
Eur. Phys. J. D
26
,
201
(
2003
).
11.
V.
Ilakovac
,
S.
Carniato
,
J.-J.
Gallet
,
E.
Kukk
,
D.
Horvatić
, and
A.
Ilakovac
,
Phys. Rev. A
77
,
012516
(
2008
).
12.
V.
Ilakovac
,
Y.
Houari
,
S.
Carniato
,
J.-J.
Gallet
,
E.
Kukk
, and
D.
Horvatić
,
Phys. Rev. A
85
,
062521
(
2012
).
13.
K.
Wang
,
V.
McKoy
,
P.
Hockett
, and
M. S.
Schuurman
,
Phys. Rev. Lett.
112
,
113007
(
2014
).
14.
M. S.
Schuurman
,
J.
Giegerich
,
K.
Pachner
,
D.
Lang
,
B.
Kiendl
,
R. J.
MacDonell
,
A.
Krueger
, and
I.
Fischer
,
Chem. Eur. J.
21
,
14486
(
2015
).
15.
S. P.
Neville
,
Y.
Wang
,
A. E.
Boguslavskiy
,
A.
Stolow
, and
M. S.
Schuurman
,
J. Chem. Phys.
144
,
014305
(
2016
).
16.
G.
Wu
,
A. E.
Boguslavskiy
,
O.
Schalk
,
M. S.
Schuurman
, and
A.
Stolow
,
J. Chem. Phys.
135
,
164309
(
2011
).
17.
O.
Schalk
,
A. E.
Boguslavskiy
, and
A.
Stolow
,
J. Phys. Chem. A
114
,
4058
(
2010
).
18.
T. J. A.
Wolf
,
T. S.
Kuhlman
,
O.
Schalk
,
T. J.
Martínez
,
K. B.
Møller
,
A.
Stolow
, and
A.-N.
Unterreiner
,
Phys. Chem. Chem. Phys.
16
,
11770
(
2014
).
19.
A. M. D.
Lee
,
J. D.
Coe
,
S.
Ullrich
,
M.-L.
Ho
,
S.-J.
Lee
,
B.-M.
Cheng
,
M. Z.
Zgierski
,
I.-C.
Chen
,
T. J.
Martínez
, and
A.
Stolow
,
J. Phys. Chem. A
111
,
11948
(
2007
).
20.
O.
Schalk
,
M. S.
Schuurman
,
G.
Wu
,
P.
Lang
,
M.
Mucke
,
R.
Feifel
, and
A.
Stolow
,
J. Phys. Chem. A
118
,
2279
(
2014
).
21.
J. H. D.
Eland
,
O.
Vieuxmaire
,
T.
Kinugawa
,
P.
Lablanquie
,
R. I.
Hall
, and
F.
Penent
,
Phys. Rev. Lett.
90
,
053003
(
2003
).
22.
T.
Kłoda
,
A.
Matsuda
,
H. O.
Karlsson
,
M.
Elshakre
,
P.
Linusson
,
J. H. D.
Eland
,
R.
Feifel
, and
T.
Hansson
,
Phys. Rev. A
82
,
033431
(
2010
).
23.
T. J.
Martínez
,
M.
Ben-Nun
, and
R. D.
Levine
,
J. Phys. Chem.
100
,
7884
(
1996
).
24.
T. J.
Martínez
,
M.
Ben-Nun
, and
R. D.
Levine
,
J. Phys. Chem. A
101
,
6389
(
1997
).
25.
M.
Ben-Nun
,
J.
Quenneville
, and
T. J.
Martínez
,
J. Phys. Chem. A
104
,
5161
(
2000
).
26.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
,
R. M.
Pitzer
,
M.
Dallos
,
T.
Müller
,
P. G.
Szalay
,
F. B.
Brown
,
R.
Ahlrichs
,
H. J.
Böhm
,
A.
Chang
,
D. C.
Comeau
,
R.
Gdanitz
,
H.
Dachsel
,
C.
Ehrhardt
,
M.
Ernzerhof
,
P.
Höchtl
,
S.
Irle
,
G.
Kedziora
,
T.
Kovar
,
V.
Parasuk
,
M. J. M.
Pepper
,
P.
Scharf
,
H.
Schiffer
,
M.
Schindler
,
M.
Schüler
,
M.
Seth
,
E. A.
Stahlberg
,
J.-G.
Zhao
,
S.
Yabushita
,
Z.
Zhang
,
M.
Barbatti
,
S.
Matsika
,
M.
Schuurmann
,
D. R.
Yarkony
,
S. R.
Brozell
,
E. V.
Beck
,
J.-P.
Blaudeau
,
M.
Ruckenbauer
,
B.
Sellner
,
F.
Plasser
, and
J. J.
Szymczak
, COLUMBUS, anab initio electronic structure program, release 7.0, 2012.
27.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
28.
H. R.
Hudock
,
B. G.
Levine
,
A. L.
Thompson
,
H.
Satzger
,
D.
Townsend
,
N.
Gador
,
S.
Ullrich
,
A.
Stolow
, and
T. J.
Martínez
,
J. Phys. Chem. A
111
,
8500
(
2007
).
29.
H. R.
Hudock
and
T. J.
Martínez
,
ChemPhysChem
9
,
2486
(
2008
).
30.
T.
Mori
,
W. J.
Glover
,
M. S.
Schuurman
, and
T. J.
Martínez
,
J. Phys. Chem. A
116
,
2808
(
2012
).
31.
B. G.
Levine
and
T. J.
Martínez
,
J. Phys. Chem. A
113
,
12815
(
2009
).
32.
K. N.
Houk
and
L. L.
Munchausen
,
J. Am. Chem. Soc.
98
,
937
(
1976
).
33.
J.
Delwiche
,
M.
Gochel-Dupuis
,
J. E.
Collin
, and
J.
Heinesch
,
J. Electron Spectrosc. Relat. Phenom.
66
,
65
(
1993
).
34.
G. D.
Willett
and
T.
Baer
,
J. Am. Chem. Soc.
102
,
6774
(
1980
).
35.
A.
Chrostowska
,
T. X. M.
Nguyen
,
A.
Dargelos
,
S.
Khayar
,
A.
Graciaa
, and
J.-C.
Guillemin
,
J. Phys. Chem. A
113
,
2387
(
2009
).
36.
O.
Schalk
,
A. E.
Boguslavskiy
,
A.
Stolow
, and
M. S.
Schuurman
,
J. Am. Chem. Soc.
133
,
16451
(
2011
).
37.
K.
Ohno
,
S.
Matsumoto
,
K.
Imai
, and
Y.
Harada
,
J. Phys. Chem.
88
,
206
(
1984
).

Supplementary Material

You do not currently have access to this content.