The determination of the state-resolved physical information within the framework of time-dependent density functional theory has remained a widely open question. We demonstrated the ability to extract the state-resolved probability from the knowledge of only the time-dependent density, which has been used as the basic variable within the time-dependent density functional theory, with the help of state-resolved single-electron capture experiments for collisions of protons on helium in the energy range of 2-100 keV/amu. The present theoretical results for capture into states of H(1s), H(2s), and H(2p) are in good agreement with the most sophisticated experimental results of H+ + He(1s2) system, validating our approach and numerical implementation.

1.
M. A. L.
Marques
,
C. A.
Ullrich
,
F.
Nogueira
,
A.
Rubio
,
K.
Burke
, and
E. K. U.
Gross
,
Time-Dependent Density Functional Theory
(
Springer-Verlag
,
Heidelberg
,
2006
).
2.
M. A. L.
Marques
,
N. T.
Maitra
,
F.
Nogueira
,
E. K. U.
Gross
, and
A.
Rubio
,
Fundamentals of Time-Dependent Density Functional Theory
(
Springer-Verlag
,
Heidelberg
,
2012
).
3.
C. A.
Ullrich
,
Time-Dependent Density-Functional Theory: Concepts and Applications
(
Oxford University Press
,
2012
).
4.
K.
Burke
 et al, “
Time-dependent density functional theory: Past, present, and future
,”
J. Chem. Phys.
123
,
062206
(
2005
).
5.
E.
Runge
 et al, “
Density-functional theory for time-dependent systems
,”
Phys. Rev. Lett.
52
,
997
(
1984
).
6.
M.
Mundt
 et al, “
Derivative discontinuities in time-dependent density-functional theory
,”
Phys. Rev. Lett.
95
,
203004
(
2005
).
7.
F.
Calvayrac
 et al, “
Nonlinear electron dynamics in metal clusters
,”
Phys. Rep.
337
,
493
(
2000
).
8.
F.
Wilken
 et al, “
Adiabatic approximation of the correlation function in the density-functional treatment of ionization processes
,”
Phys. Rev. Lett.
97
,
203001
(
2006
).
9.
N.
Rohringer
 et al, “
Calculating state-to-state transition probabilities within time-dependent density-functional theory
,”
Phys. Rev. A
74
,
042512
(
2006
).
10.
Y. H.
Li
 et al, “
Time-dependent transition density matrix
,”
Chem. Phys.
391
,
157
(
2011
).
11.
F.
Wang
 et al, “
An effective method for state population within time-dependent density functional theory
,”
J. Chem. Phys.
139
,
094108
(
2013
).
12.
P. O.
Löwdin
, “
Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction
,”
Phys. Rev.
97
,
1474
(
1955
).
13.
J. P.
Perdew
 et al, “
Density-functional theory for fractional particle number: Derivative discontinuities of the energy
,”
Phys. Rev. Lett.
49
,
1691
(
1982
).
14.
C. A.
Ullrich
, “
Time-dependent Kohn-Sham approach to multiple ionization
,”
J. Mol. Struct.: THEOCHEM
501-502
,
315
(
2000
).
15.
D. C.
Montgomery
and
E. A.
Peck
,
Introduction to Linear Regression Analysis
, 2nd ed. (
John Wiley and Sons, Inc.
,
1992
).
16.
J. B.
Delos
 et al, “
Semiclassical theory of inelastic collisions. II. Momentum-space formulation
,”
Phys. Rev. A
6
,
720
(
1972
).
17.
A.
Kołakowska
 et al, “
Excitation and charge transfer in proton-hydrogen collisions
,”
Phys. Rev. A
58
,
2872
(
1998
).
18.
A.
Castro
 et al, “
Propagators for the time-dependent Kohn-Sham equations
,”
J. Chem. Phys.
121
,
3425
(
2004
).
19.
J. G.
Muga
 et al, “
Complex absorbing potentials
,”
Phys. Rep.
395
,
357
(
2004
).
20.
Q.
Chen
 et al, “
Non-adiabatic time-dependent mean-field description for ion-atom collisions: Application to H+ + Na(3s) H+ + Na(3p) case
,”
J. Phys. B
38
,
4291
(
2005
).
21.
F.
Wang
 et al, “
Coordinate space translation technique for simulation of electronic process in the ion-atom collision
,”
J. Chem. Phys.
134
,
154308
(
2011
).
22.
F.
Wang
 et al, “
A theoretical model for electron transfer in ion-atom collisions: Calculations for the collision of a proton with an argon atom
,”
Phys. Lett. A
375
,
3290
(
2011
).
23.
F.
Wang
 et al, “
Comparison of three methods for calculation of electron transfer probability in H+ + Ne
,”
Phys. Lett. A
376
,
469
(
2012
).
24.
C. L.
Zhang
 et al, “
Theoretical investigation of He2+ – Ar collisions in the energy range of 4-300 keV/amu
,”
Phys. Rev. A
87
,
032711
(
2013
).
25.
X. H.
Hong
 et al, “
Theoretical investigation of the electron capture and loss processes in the collisions of He2+ + Ne
,”
J. Chem. Phys.
139
,
084321
(
2013
).
26.
X. H.
Hong
 et al, “
H+ – H2O collisions studied by time-dependent density-functional theory combined with the molecular dynamics method
,”
Phys. Rev. A
93
,
062706
(
2016
).
27.
N.
Troullier
 et al, “
Efficient pseudopotentials for plane-wave calculations
,”
Phys. Rev. B
43
,
1993
(
1991
).
28.
M.
Oliveira
 et al, “
Generating relativistic pseudo-potentials with explicit incorporation of semi-core states using APE, the Atomic Pseudo-potentials Engine
,”
Comput. Phys. Comm.
178
,
524
(
2008
).
29.
M. A. L.
Marques
 et al, “
octopus: A first-principles tool for excited electron-ion dynamics
,”
Comput. Phys. Commun.
151
,
60
(
2003
).
30.
A.
Castro
 et al, “
octopus: A tool for the application of time-dependent density functional theory
,”
Phys. Status Solidi B
243
,
2465
(
2006
).
31.
D. M.
Ceperley
 et al, “
Ground state of the electron gas by a stochastic method
,”
Phys. Rev. Lett.
45
,
566
(
1980
).
32.
J. P.
Perdew
 et al, “
Self-interaction correction to density-functional approximations for many-electron systems
,”
Phys. Rev. B
23
,
5048
(
1981
).
33.
R.
Hippler
 et al, “
Cross sections for charge-exchange excitation to H(2p) in proton-rare-gas-atom collisions (1–25 keV)
,”
Phys. Rev. A
35
,
3139
(
1987
).
34.
E. P.
Andreev
 et al, “
Charge exchange of protons in inert gases involving the formation of fast hydrogen atoms in the 2s and 2p states
,”
Sov. Phys. JETP
23
,
375
(
1966
).
35.
T. D.
Gaily
 et al, “
Polarization of Lyman-alpha radiation from H+- and D+-rare-gas charge-transfer collisions
,”
Phys. Rev.
167
,
81
(
1968
).
36.
R.
Hippler
 et al, “
Alignment of H(2p) following H+ – He, Ar charge-changing collisions
,”
J. Phys. B
19
,
1507
(
1986
).
37.
R. H.
Hughes
 et al, “
Electron capture into the n = 2 states of hydrogen by fast proton impact on gases
,”
Phys. Rev. A
4
,
1453
(
1971
).
38.
D.
Pretzer
 et al, “
Lyman alpha production in proton-rare gas collisions
,”
Phys. Rev. Lett.
10
,
340
(
1963
).
39.
B.
Van Zyl
 et al, “
Lyman- emission from H+ impact on rare-gas atoms
,”
Phys. Rev. A
35
,
4551
(
1987
).
40.
J. S.
Risley
 et al, “
Electron-transfer cross sections to low-lying excited states of hydrogen in collisions of protons with helium and argon
,”
J. Phys. B
11
,
1759
(
1978
).
41.
R. K.
Janev
,
Atomic and Plasma-Material Interaction Data for Fusion (Supplement to the Journal Nuclear Fusion)
(
International Atomic Energy Agency
,
Vienna
,
1992
), Vol.
3
, p.
63
.
42.
S.
Ryding
 et al, “
A study of Lyman emission in charge-transfer collisions involving 40-200 keV protons
,”
Proc. Phys. Soc.
89
,
547
(
1966
).
43.
D. H.
Jaecks
 et al, “
Production of metastable hydrogen atoms in proton-rare-gas collisions
,”
Phys. Rev.
137
,
A340
(
1965
).
44.
R.
Hippler
 et al, “
Coherent excitation of H(n = 2) in H+, H–He collisions
,”
Z. Phys. D: At., Mol. Clusters
18
,
61
(
1991
).
45.
D. H.
Crandall
 et al, “
Charge transfer to the 2s state of hydrogen from close collisions of H+ with He and Ar
,”
Phys. Rev. A
4
,
2271
(
1971
).
46.
R. L.
Fitzwilson
 et al, “
Formation of metastable hydrogen atoms by charge transfer
,”
Phys. Rev. A
3
,
1305
(
1971
).
47.
J. B. H.
Stedeford
 et al, “
Further investigations of charge exchange and electron detachment. I. Ion energies 3 to 40 keV. II. Ion energies 100 to 4000 eV
,”
Proc. R. Soc. A
227
,
466
(
1955
).
48.
J. F.
Williams
 et al, “
Charge exchange and dissociation cross sections for H 1 + , H 2 + , and H 3 + ions of 2- to 50-kev energy incident upon hydrogen and the inert gases
,”
Phys. Rev.
149
,
62
(
1966
).
49.
S. K.
Allison
, “
Experimental results on charge-changing collisions of hydrogen and helium atoms and ions at kinetic energies above 0.2 kev
,”
Rev. Mod. Phys.
30
,
1137
(
1958
).
50.
D.
Vieira
 et al, “
Physical signatures of discontinuities of the time-dependent exchange-correlation potential
,”
Phys. Chem. Chem. Phys.
11
,
4647
(
2009
).
You do not currently have access to this content.