When an ion transports from water to oil through water-oil interface, it accompanies hydrated water molecules and transiently forms a chain of water, called “water finger.” We thoroughly investigated the role of the water finger in chloride ion transport through water-dichloromethane interface by using molecular dynamics technique. We developed a proper coordinate w to describe the water finger structure and calculated the free energy landscape and the friction for the ion transport as a function of ion position z and the water finger coordinate w. It is clearly shown that the formation and break of water finger accompanies an activation barrier for the ion transport, which has been overlooked in the conventional free energy curve along the ion position z. The present analysis of the friction does not support the hypothesis of augmented local friction (reduced local diffusion coefficient) at the interface. These results mean that the experimentally observed rate constants of interfacial ion transfer are reduced from the diffusion-limited one because of the activation barrier associated to the water finger, not the anomalous local diffusion. We also found that the nascent ion just after the break of water finger has excessive hydration water than that in the oil phase.

1.
H.
Freiser
,
Chem. Rev.
88
,
611
616
(
1988
).
2.
J.
de Gyves
and
E.
Rodríguez de San Miguel
,
Ind. Eng. Chem. Res.
38
,
2182
2202
(
1999
).
3.
C. M.
Starks
,
M.
Halpern
, and
C. L.
Liotta
,
Phase-Transfer Catalysis: Fundamentals, Applications, and Industrial Perspectives
(
Chapman & Hall
,
1994
).
4.
H. H.
Girault
,
Electroanalytical Chemistry: A series of Advances
(
CRC Press
,
2010
), Vol.
23
, pp.
1
104
.
5.
P.
Läuger
and
G.
Stark
,
Biochim. Biophys. Acta, Biomembr.
211
,
458
466
(
1970
).
6.
C. E.
Kolb
,
R. A.
Cox
,
J. P. D.
Abbatt
,
M.
Ammann
,
E. J.
Davis
,
D. J.
Donaldson
,
B. C.
Garrett
,
C.
George
,
P. T.
Griffiths
,
D. R.
Hanson
,
M.
Kulmala
,
G.
McFiggans
,
U.
Pöschl
,
I.
Riipinen
,
M. J.
Rossi
,
Y.
Rudich
,
P. E.
Wagner
,
P. M.
Winkler
,
D. R.
Worsnop
, and
C. D.
O’Dowd
,
Atmos. Chem. Phys.
10
,
10561
10605
(
2010
).
7.
Z.
Samec
,
Electrochim. Acta
84
,
21
28
(
2012
).
8.
S.
Amemiya
,
J.
Kim
,
A.
Izadyar
,
B.
Kabagambe
,
M.
Shen
, and
R.
Ishimatsu
,
Electrochim. Acta
110
,
836
845
(
2013
).
9.
B. R.
Silver
,
K.
Holub
, and
V.
Marecek
,
J. Electroanal. Chem.
731
,
107
111
(
2014
).
10.
Y.
Wang
,
J.
Velmurugan
,
M. V.
Mirkin
,
P. J.
Rodgers
,
J.
Kim
, and
S.
Amemiya
,
Anal. Chem.
82
,
77
83
(
2010
).
11.
R. A.
Marcus
,
J. Chem. Phys.
113
,
1618
1629
(
2000
).
12.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases
(
Oxford University Press
,
Oxford
,
2006
).
13.
14.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
341
(
1990
).
15.
R. F.
Grote
and
J. T.
Hynes
,
J. Chem. Phys.
73
,
2715
2732
(
1980
).
16.
L. X.
Dang
,
J. Phys. Chem. B
103
,
8195
8200
(
1999
).
17.
K.
Schweighofer
and
I.
Benjamin
,
J. Phys. Chem. A
103
,
10274
10279
(
1999
).
18.
L. X.
Dang
,
J. Phys. Chem. B
105
,
804
809
(
2001
).
19.
D. J.
dos Santos
and
J. A.
Gomes
,
ChemPhysChem
3
,
946
951
(
2002
).
20.
G.
Luo
,
S.
Malkova
,
J.
Yoon
,
D. G.
Schultz
,
B.
Lin
,
M.
Meron
,
I.
Benjamin
,
P.
Vanysek
, and
M. L.
Schlossman
,
Science
311
,
216
218
(
2006
).
21.
G.
Luo
,
S.
Malkova
,
J.
Yoon
,
D. G.
Schultz
,
B.
Lin
,
M.
Meron
,
I.
Benjamin
,
P.
Vanýsek
, and
M. L.
Schlossman
,
J. Electroanal. Chem.
593
,
142
158
(
2006
).
22.
C. D.
Wick
and
L. X.
Dang
,
J. Phys. Chem. C
112
,
647
649
(
2008
).
23.
I.
Benjamin
,
J. Phys. Chem. B
117
,
4325
4331
(
2013
).
24.
N.
Kikkawa
,
T.
Ishiyama
, and
A.
Morita
,
Chem. Phys. Lett.
534
,
19
22
(
2012
).
25.
M.
Darvas
,
M.
Jorge
,
M. N.
Cordeiro
,
S. S.
Kantorovich
,
M.
Sega
, and
P.
Jedlovszky
,
J. Phys. Chem. B
117
,
16148
16156
(
2013
).
26.
A.
Gupta
,
A.
Chauhan
, and
D. I.
Kopelevich
,
Phys. Rev. E
78
,
041605
(
2008
).
28.
K. J.
Schweighofer
and
I.
Benjamin
,
J. Phys. Chem.
99
,
9974
9985
(
1995
).
29.
A. A.
Kornyshev
,
A. M.
Kuznetsov
, and
M.
Urbakh
,
J. Chem. Phys.
117
,
6766
6779
(
2002
).
30.
L. I.
Daikhin
,
A. A.
Kornyshev
,
A. M.
Kuznetsov
, and
M.
Urbakh
,
Chem. Phys.
319
,
253
260
(
2005
).
31.
I.
Benjamin
,
J. Chem. Phys.
97
,
1432
1445
(
1992
).
32.
D. P.
Tieleman
,
S. J.
Marrink
, and
H. J. C.
Berendsen
,
Biochim. Biophys. Acta, Biomembr.
1331
,
235
270
(
1997
).
33.
M.
Lauterbach
,
E.
Engler
,
N.
Muzet
,
L.
Troxler
, and
G.
Wipff
,
J. Phys. Chem. B
102
,
245
256
(
1998
).
34.
P.
Sun
,
F. O.
Laforge
, and
M. V.
Mirkin
,
J. Am. Chem. Soc.
129
,
12410
12411
(
2007
).
35.
K. V.
Nelson
and
I.
Benjamin
,
J. Phys. Chem. C
115
,
2290
2296
(
2011
).
36.
N.
Kikkawa
,
L.
Wang
, and
A.
Morita
,
J. Am. Chem. Soc.
137
,
8022
8025
(
2015
).
37.
B.
Korte
and
J.
Vygen
,
Combinatorial Optimization: Theory and Algorithms
(
Springer
,
2014
).
38.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
1989
).
39.
Y.
Sugita
,
A.
Kitao
, and
Y.
Okamoto
,
J. Chem. Phys.
113
,
6042
6051
(
2000
).
40.
A.
Bowyer
,
Comput. J.
24
,
162
166
(
1981
).
41.
D. F.
Watson
,
Comput. J.
24
,
167
172
(
1981
).
42.
R.
Seidel
,
Comput. Geom.
5
,
115
116
(
1995
).
43.
H. C.
Andersen
,
J. Comput. Phys.
52
,
24
34
(
1983
).
44.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
329
,
261
270
(
2000
).
45.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
1092
(
1953
).
46.
M.
Toda
,
R.
Kubo
,
N.
Saitō
, and
N.
Hashitsume
,
Statistical Physics II: Nonequilibrium Statistical Mechanics
(
Springer Science & Business Media
,
1992
).
47.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
341
(
1977
).
48.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
49.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
1697
(
1985
).
50.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
,
J. Chem. Phys.
76
,
637
649
(
1982
).
51.
J. W.
Caldwell
and
P. A.
Kollman
,
J. Phys. Chem.
99
,
6208
6219
(
1995
).
52.
H. A.
Lorentz
,
Ann. Phys.
248
,
127
136
(
1881
).
53.
D.
Berthelot
,
Compt. Rendus
126
,
1703
1706
(
1898
).
54.
F. J.
Vesely
,
J. Comput. Phys.
24
,
361
371
(
1977
).
55.
W. H.
Press
,
Numerical Recipes 3rd Edition: The Art of Scientific Computing
(
Cambridge University Press
,
2007
).
56.
Y.
Marcus
,
Pure Appl. Chem.
55
,
977
1021
(
1983
).
57.
S.
Sakaguchi
and
A.
Morita
,
J. Chem. Phys.
137
,
064701
(
2012
).
58.
C.
Gavach
,
B.
D’Epenoux
, and
F.
Henry
,
J. Electroanal. Chem.
64
,
107
115
(
1975
).
59.
Z.
Samec
and
V.
Mareček
,
J. Electroanal. Chem.
200
,
17
33
(
1986
).
60.
L.
Yuan-Hui
and
S.
Gregory
,
Geochim. Cosmochim. Acta
38
,
703
714
(
1974
).
61.
B. J.
Gertner
,
K. R.
Wilson
, and
J. T.
Hynes
,
J. Chem. Phys.
90
,
3537
3558
(
1989
).
62.
A.
Trojánek
,
V.
Mareček
, and
Z.
Samec
,
Electrochim. Acta
180
,
366
372
(
2015
).
63.
D.
Rose
and
I.
Benjamin
,
J. Phys. Chem. B
113
,
9296
9303
(
2009
).
64.
I.
Benjamin
,
J. Phys. Chem. B
112
,
15801
15806
(
2008
).
65.
S.
Kusakabe
and
M.
Arai
,
Bull. Chem. Soc. Jpn.
69
,
581
588
(
1996
).
66.
R. D.
Milne
,
SIAM J. Appl. Math.
16
,
931
944
(
1968
).
67.
C. R.
Rao
and
S. K.
Mitra
,
Generalized Inverse of Matrices and Its Applications
(
Wiley
,
New York
,
1971
).
You do not currently have access to this content.