Motivated by the famous Waddington’s epigenetic landscape metaphor in developmental biology, biophysicists and applied mathematicians made different proposals to construct the landscape for multi-stable complex systems. We aim to summarize and elucidate the relationships among these theories from a mathematical point of view. We systematically investigate and compare three different but closely related realizations in the recent literature: the Wang’s potential landscape theory from steady state distribution of stochastic differential equations (SDEs), the Freidlin-Wentzell quasi-potential from the large deviation theory, and the construction through SDE decomposition and A-type integral. We revisit that the quasi-potential is the zero noise limit of the potential landscape, and the potential function in the third proposal coincides with the quasi-potential. We compare the difference between local and global quasi-potential through the viewpoint of exchange of limit order for time and noise amplitude. We argue that local quasi-potentials are responsible for getting transition rates between neighboring stable states, while the global quasi-potential mainly characterizes the residence time of the states as the system reaches stationarity. The difference between these two is prominent when the transitivity property is broken. The most probable transition path by minimizing the Onsager-Machlup or Freidlin-Wentzell action functional is also discussed. As a consequence of the established connections among different proposals, we arrive at the novel result which guarantees the existence of SDE decomposition while denies its uniqueness in general cases. It is, therefore, clarified that the A-type integral is more appropriate to be applied to the decomposed SDEs rather than its primitive form as believed by previous researchers. Our results contribute to a deeper understanding of landscape theories for biological systems.

1.
C. H.
Waddington
,
The Strategy of the Genes. A Discussion of Some Aspects of Theoretical Biology. With an Appendix by H. Kacser
(
George Allen & Unwin, Ltd.
,
London
,
1957
).
2.
H. A.
Jamniczky
,
J. C.
Boughner
,
C.
Rolian
,
P. N.
Gonzalez
,
C. D.
Powell
,
E. J.
Schmidt
 et al, “
Rediscovering Waddington in the post-genomic age
,”
BioEssays
32
(
7
),
553
558
(
2010
).
3.
J. E.
Ferrell
, “
Bistability, bifurcations, and Waddington’s epigenetic landscape
,”
Curr. Biol.
22
(
11
),
R458
R466
(
2012
).
4.
S.
Huang
, “
The molecular and mathematical basis of Waddington’s epigenetic landscape: A framework for post-Darwinian biology?
,”
BioEssays
34
(
2
),
149
157
(
2012
).
5.
H.
Ge
and
H.
Qian
, “
Landscapes of non-gradient dynamics without detailed balance: Stable limit cycles and multiple attractors
,”
Chaos
22
(
2
),
023140
(
2012
).
6.
J. X.
Zhou
,
M.
Aliyu
,
E.
Aurell
, and
S.
Huang
, “
Quasi-potential landscape in complex multi-stable systems
,”
J. R. Soc., Interface
9
(
77
),
3539
3553
(
2012
).
7.
J.
Wang
, “
Landscape and flux theory of non-equilibrium dynamical systems with application to biology
,”
Adv. Phys.
64
(
1
),
1
137
(
2015
).
8.
H.
Ge
and
H.
Qian
, “
Thermodynamic limit of a nonequilibrium steady state: Maxwell-type construction for a bistable biochemical system
,”
Phys. Rev. Lett.
103
(
14
),
148103
(
2009
).
9.
R. S.
Maier
and
D. L.
Stein
, “
Limiting exit location distributions in the stochastic exit problem
,”
SIAM J. Appl. Math.
57
(
3
),
752
790
(
1997
).
10.
S. V.
Malinin
and
V. Y.
Chernyak
, “
Transition times in the low-noise limit of stochastic dynamics
,”
J. Chem. Phys.
132
(
1
),
014504
(
2010
).
11.
J.
Wang
,
C.
Li
, and
E.
Wang
, “
Potential and flux landscapes quantify the stability and robustness of budding yeast cell cycle network
,”
Proc. Natl. Acad. Sci. U. S. A.
107
(
18
),
8195
8200
(
2010
).
12.
C.
Lv
,
X.
Li
,
F.
Li
, and
T.
Li
, “
Energy landscape reveals that the budding yeast cell cycle is a robust and adaptive multi-stage process
,”
PLoS Comput. Biol.
11
(
3
),
e1004156
(
2015
).
13.
H. A.
Kramers
, “
Brownian motion in a field of force and the diffusion model of chemical reactions
,”
Physica
7
(
4
),
284
304
(
1940
).
14.
H.
Feng
and
J.
Wang
, “
Potential and flux decomposition for dynamical systems and non-equilibrium thermodynamics: Curvature, gauge field, and generalized fluctuation-dissipation theorem
,”
J. Chem. Phys.
135
(
23
),
234511-1
234511-4
(
2011
).
15.
P. G.
Wolynes
,
J. N.
Onuchic
, and
D.
Thirumalai
, “
Navigating the folding routes
,”
Science
267
(
5204
),
1619
1620
(
1995
).
16.
C.
Lv
,
X.
Li
,
F.
Li
, and
T.
Li
, “
Constructing the energy landscape for genetic switching system driven by intrinsic noise
,”
PLoS One
9
(
2
),
e88167
(
2014
).
17.
M.
Lu
,
J.
Onuchic
, and
E.
Ben-Jacob
, “
Construction of an effective landscape for multistate genetic switches
,”
Phys. Rev. Lett.
113
(
7
),
078102
(
2014
).
18.
H.
Ge
,
H.
Qian
, and
X. S.
Xie
, “
Stochastic phenotype transition of a single cell in an intermediate region of gene state switching
,”
Phys. Rev. Lett.
114
(
7
),
078101
(
2015
).
19.
J.
Wang
,
L.
Xu
, and
E.
Wang
, “
Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations
,”
Proc. Natl. Acad. Sci. U. S. A.
105
(
34
),
12271
12276
(
2008
).
20.
M. I.
Freidlin
,
J.
Szücs
, and
A. D.
Wentzell
,
Random Perturbations of Dynamical Systems
(
Springer Science & Business Media
,
2012
), Vol.
260
.
21.
E.
Aurell
and
K.
Sneppen
, “
Epigenetics as a first exit problem
,”
Phys. Rev. Lett.
88
(
4
),
048101
(
2002
).
22.
J.
Wang
,
K.
Zhang
,
L.
Xu
, and
E.
Wang
, “
Quantifying the Waddington landscape and biological paths for development and differentiation
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
20
),
8257
8262
(
2011
).
23.
P.
Ao
, “
Potential in stochastic differential equations: Novel construction
,”
J. Phys. A: Math. Gen.
37
(
3
),
L25
(
2004
).
24.
L.
Xu
,
F.
Zhang
,
E.
Wang
, and
J.
Wang
, “
The potential and flux landscape, Lyapunov function and non-equilibrium thermodynamics for dynamic systems and networks with an application to signal-induced Ca2+ oscillation
,”
Nonlinearity
26
(
2
),
R69
(
2013
).
25.
Y.
Chen
,
C.
Lv
,
F.
Li
, and
T.
Li
, “
Distinguishing the rates of gene activation from phenotypic variations
,”
BMC Syst. Biol.
9
(
1
),
29
(
2015
).
26.
X.
Zhu
,
L.
Yin
,
L.
Hood
, and
P.
Ao
, “
Robustness, stability and efficiency of phage λ regulatory network: Dynamical structure analysis
,”
J. Bioinf. Comput. Biol.
2
,
785
817
(
2004
).
27.
R.
Yuan
and
P.
Ao
, “
Beyond Itô versus Stratonovich
,”
J. Stat. Mech.: Theory Exp.
2012
(
07
),
P07010
.
28.
C. W.
Gardiner
,
Handbook of Stochastic Methods
, 2nd ed. (
Springer Verlag
,
2004
).
29.
D. T.
Gillespie
, “
The chemical Langevin equation
,”
J. Chem. Phys.
113
(
1
),
297
306
(
2000
).
30.
M. B.
Elowitz
,
A. J.
Levine
,
E. D.
Siggia
, and
P. S.
Swain
, “
Stochastic gene expression in a single cell
,”
Science
297
(
5584
),
1183
1186
(
2002
).
31.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
London
,
2002
).
32.
X. J.
Zhang
,
H.
Qian
, and
M.
Qian
, “
Stochastic theory of nonequilibrium steady states and its applications. Part I
,”
Phys. Rep.
510
(
1
),
1
86
(
2012
).
33.
R. P.
Feynman
, “
Space-time approach to non-relativistic quantum mechanics
,”
Rev. Mod. Phys.
20
(
2
),
367
(
1948
).
34.
J.
Wang
,
K.
Zhang
, and
E.
Wang
, “
Kinetic paths, time scale, and underlying landscapes: A path integral framework to study global natures of nonequilibrium systems and networks
,”
J. Chem. Phys.
133
(
12
),
125103
(
2010
).
35.
T.
Fujita
and
S.
Kotani
, “
The Onsager-Machlup function for diffusion processes
,”
J. Math. Kyoto Univ.
22
(
1
),
115
130
(
1982
).
36.
D.
Dürr
and
A.
Bach
, “
The Onsager-Machlup function as Lagrangian for the most probable path of a diffusion process
,”
Commun. Math. Phys.
60
(
2
),
153
170
(
1978
).
37.
H.
Feng
,
K.
Zhang
, and
J.
Wang
, “
Non-equilibrium transition state rate theory
,”
Chem. Sci.
5
(
10
),
3761
3769
(
2014
).
38.
Y.
Tang
,
R.
Yuan
, and
P.
Ao
, “
Summing over trajectories of stochastic dynamics with multiplicative noise
,”
J. Chem. Phys.
141
(
4
),
044125
(
2014
).
39.
Y.
Takahashi
and
S.
Watanabe
, “
The probability functionals (Onsager-Machlup functions) of diffusion processes
,” in
Stochastic Integrals
(
Springer
,
1981
), pp.
433
463
.
40.
M.
Capitaine
, “
On the Onsager-Machlup functional for elliptic diffusion processes
,” in
Seminaire de Probabilites
,
Lecture Notes in Mathematics
(
Springer
,
1996
), Vol.
34
.
41.
L.
Landau
and
E.
Lifshitz
,
Classical Mechanics
(
Pergamon Press
,
Oxford
,
1960
).
42.
See supplementary material at http://dx.doi.org/10.1063/1.4943096 for the detailed description for constructing the local quasi-potential functions appeared in the main article, as well as some examples on the application of force decomposition via quasi-potential. Some remarks and discussions on global representation issue of SDE decomposition are then provided. The concrete example denying the uniqueness of SDE decomposition is shown in the last part.
43.
E.
Vanden-Eijnden
and
M.
Heymann
, “
The geometric minimum action method for computing minimum energy paths
,”
J. Chem. Phys.
128
(
6
),
061103
(
2008
).
44.
C. M.
Bender
and
S. A.
Orszag
,
Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory
(
Springer Verlag
,
New York
,
1999
).
45.
L.
Yin
and
P.
Ao
, “
Existence and construction of dynamical potential in nonequilibrium processes without detailed balance
,”
J. Phys. A: Math. Gen.
39
(
27
),
8593
(
2006
).
46.
D. Q.
Jiang
,
M.
Qian
, and
M. P.
Qian
,
Mathematical Theory of Nonequilibrium Steady States
(
Springer Science & Business Media
,
2004
), Vol.
1833
.
47.
J.
Xing
, “
Mapping between dissipative and Hamiltonian systems
,”
J. Phys. A: Math. Theor.
43
(
37
),
375003
(
2010
).
48.
R.
Yuan
,
Y.
Ma
,
B.
Yuan
, and
P.
Ao
, “
Constructive proof of global Lyapunov function as potential function
,” e-print arXiv:10122721 (
2010
).

Supplementary Material

You do not currently have access to this content.