Electromagnetic fields (EMFs) are ever-present, and so is the need to better understand their influence on human health and biological matter in general. The interaction between a molecular system and external EMF can alter the structure, and dynamical behaviour, and, hence, biological function of proteins with uncertain health consequences. This urges a detailed investigation of EMF-induced effects on basic protein biophysics. Here, we used all-atom non-equilibrium molecular dynamics simulations to understand and quantify the response mechanisms of the amyloidogenic apoC-II(60-70) peptides to non-ionising radiation by modelling their behaviour under external electromagnetic and electric fields of different strengths. Our simulations show high strength fields (>0.04 V/nm) cause structural changes in apoC-II(60-70) due to the peptide dipole alignment along the applied field direction, which disrupts the inherent β-hairpin conformation known to be the intermediate state for fibril formation. The intermediate field-strength range (0.04-0.004 V/nm) causes a significant acceleration in peptide dynamics, which leads to the increased population of structures with fibril-inhibiting characteristics, such as the separated N- and C-termini and colocation of the aromatic residues at the same peptide face. In contrast, lower field strengths (<0.004 V/nm) promote the formation of the amyloid-prone hairpin structures relative to the ambient conditions. These findings suggest that intermediate-strength electromagnetic fields could be considered for designing alternative treatments of amyloid diseases, while the very high and low field strengths could be employed for engineering well-ordered fibrillar aggregates for non-medicinal applications.

1.
F.
Apollonio
,
M.
Liberti
,
A.
Paffi
,
C.
Merla
,
P.
Marracino
,
A.
Denzi
,
C.
Marino
, and
G.
d’Inzeo
,
IEEE Trans. Microwave Theory Tech.
61
(
5
),
2031
(
2013
).
2.
A.
Budi
,
F. S.
Legge
,
H.
Treutlein
, and
I.
Yarovsky
,
J. Phys. Chem. B
109
(
47
),
22641
(
2005
).
3.
A.
Budi
,
F. S.
Legge
,
H.
Treutlein
, and
I.
Yarovsky
,
J. Phys. Chem. B
112
(
26
),
7916
(
2008
).
4.
M.
Caraglia
,
M.
Marra
,
F.
Mancinelli
,
G.
D’ambrosio
,
R.
Massa
,
A.
Giordano
,
A.
Budillon
,
A.
Abbruzzese
, and
E.
Bismuto
,
J. Cell. Physiol.
204
(
2
),
539
(
2005
).
5.
L. J.
Challis
,
Bioelectromagnetics
7
(
S7
),
S98
(
2005
).
6.
D. I. de
Pomerai
,
B.
Smith
,
A.
Dawe
,
K.
North
,
T.
Smith
,
D. B.
Archer
,
I. R.
Duce
,
D.
Jones
, and
E. P. M.
Candido
,
FEBS Lett.
543
(
1-3
),
93
(
2003
).
7.
N. J.
English
and
C. J.
Waldron
,
Phys. Chem. Chem. Phys.
17
(
19
),
12407
(
2015
).
9.
A.
Starzyk
and
M.
Cieplak
,
J. Chem. Phys.
139
(
4
),
045102
(
2013
).
10.
L. G.
Salford
,
A. E.
Brun
,
J. L.
Eberhardt
,
L.
Malmgren
, and
B. R. R.
Persson
,
Environ. Health Perspect.
111
(
7
),
881
(
2003
).
11.
F.
Mancinelli
,
M.
Caraglia
,
A.
Abbruzzese
,
G.
d’Ambrosio
,
R.
Massa
, and
E.
Bismuto
,
J. Cell. Biochem.
93
(
1
),
188
(
2004
).
12.
M. H.
Repacholi
,
Toxicol. Lett.
120
(
1-3
),
323
(
2001
).
13.
N. J.
English
and
D. A.
Mooney
,
J. Chem. Phys.
126
(
9
),
091105
(
2007
).
14.
N. J.
English
,
G. Y.
Solomentsev
, and
P.
O’Brien
,
J. Chem. Phys.
131
(
3
),
035106
(
2009
).
15.
J. A.
Laurence
,
P. W.
French
,
R. A.
Lindner
, and
D. R.
McKenzie
,
J. Theor. Biol.
206
(
2
),
291
(
2000
).
16.
Y.
Xie
,
Y.
Pan
,
R.
Zhang
,
Y.
Liang
, and
Z.
Li
,
Appl. Surf. Sci.
326
,
55
(
2015
).
17.
W.
Zhao
,
Y.
Tang
,
L.
Lu
,
X.
Chen
, and
C.
Li
,
Food Bioprocess Technol.
7
(
1
),
114
(
2014
).
18.
F.
Lugli
,
F.
Toschi
,
F.
Biscarini
, and
F.
Zerbetto
,
J. Chem. Theory Comput.
6
(
11
),
3516
(
2010
).
19.
H.
Bohr
and
J.
Bohr
,
Phys. Rev. E
61
(
4
),
4310
(
2000
).
20.
R.
Nelson
and
D.
Eisenberg
,
Curr. Opin. Struct. Biol.
16
(
2
),
260
(
2006
).
21.
F.
Toschi
,
F.
Lugli
,
F.
Biscarini
, and
F.
Zerbetto
,
J. Phys. Chem. B
113
(
1
),
369
(
2009
).
22.
G. W.
Arendash
,
J.
Sanchez-Ramos
,
T.
Mori
,
M.
Mamcarz
,
X.
Lin
,
M.
Runfeldt
,
L.
Wang
,
G.
Zhang
,
V.
Sava
,
J.
Tan
, and
C.
Cao
,
J. Alzheimer’s Dis.
19
(
1
),
191
(
2010
).
23.
A.
Budi
,
F. S.
Legge
,
H.
Treutlein
, and
I.
Yarovsky
,
J. Phys. Chem. B
111
(
20
),
5748
(
2007
).
24.
A.
Budi
,
F. S.
Legge
,
H.
Treutlein
, and
I.
Yarovsky
,
Eur. Biophys. J.
33
(
2
),
121
(
2004
).
25.
D. M.
Hatters
,
C. E.
MacPhee
,
L. J.
Lawrence
,
W. H.
Sawyer
, and
G. J.
Howlett
,
Biochemistry
39
,
8276
(
2000
).
26.
C. L.
Teoh
,
M. D. W.
Griffin
, and
G. J.
Howlett
,
Protein Cell
2
,
116
(
2011
).
27.
L. M.
Wilson
,
Y.-F.
Mok
,
K. J.
Binger
,
M. D. W.
Griffin
,
H. D. T.
Mertens
,
F.
Lin
,
J. D.
Wade
,
P. R.
Gooley
, and
G. J.
Howlett
,
J. Mol. Biol.
366
(
5
),
1639
(
2007
).
28.
M. D. W.
Griffin
,
L.
Yeung
,
A.
Hung
,
N.
Todorova
,
Y.-F.
Mok
,
J. A.
Karas
,
P. R.
Gooley
,
I.
Yarovsky
, and
G. J.
Howlett
,
J. Mol. Biol.
416
(
5
),
642
(
2012
).
29.
N.
Todorova
,
A.
Hung
,
S. M.
Maaser
,
M. D. W.
Griffin
,
J.
Karas
,
G. J.
Howlett
, and
I.
Yarovsky
,
Phys. Chem. Chem. Phys.
12
(
44
),
14762
(
2010
).
30.
N.
Todorova
,
A.
Hung
, and
I.
Yarovsky
,
J. Phys. Chem. B
114
(
23
),
7974
(
2010
).
31.
N.
Todorova
,
A. J.
Makarucha
,
N. D. M.
Hine
,
A. A.
Mostofi
, and
I.
Yarovsky
,
PLoS Comput. Biol.
9
(
12
),
e1003360
(
2013
).
32.
N.
Todorova
,
L.
Yeung
,
A.
Hung
, and
I.
Yarovsky
,
PLoS One
8
(
2
),
e57437
(
2013
).
33.
A.
Hung
,
M. D. W.
Griffin
,
G. J.
Howlett
, and
I.
Yarovsky
,
Eur. Biophys. J.
38
(
1
),
99
(
2008
).
34.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
Dinola
, and
J. R.
Haak
,
J. Chem. Phys.
81
(
8
),
3684
(
1984
).
35.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
,
J. Comput. Chem.
18
(
12
),
1463
(
1997
).
36.
N. J.
English
and
J. M. D.
MacElroy
,
J. Chem. Phys.
118
(
4
),
1589
(
2003
).
37.
N. J.
English
and
J. M. D.
MacElroy
,
J. Chem. Phys.
119
(
22
),
11806
(
2003
).
38.
J.
Shao
,
S. W.
Tanner
,
N.
Thompson
, and
T. E.
Cheatham
,
J. Chem. Theory Comput.
3
(
6
),
2312
(
2007
).
39.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
(
1
),
33
(
1996
).
40.
G. Y.
Solomentsev
,
N. J.
English
, and
D. A.
Mooney
,
J. Comput. Chem.
33
(
9
),
917
(
2012
).
41.
See supplementary material at http://dx.doi.org/10.1063/1.4941108 for additional data from the clustering analysis, N-C terminal and radius of gyration calculations, and segmented free energy maps.

Supplementary Material

You do not currently have access to this content.