Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.

1.
B. G.
Levine
and
T. J.
Martinez
,
Annu. Rev. Phys. Chem.
58
,
613
(
2007
).
2.
Conical Intersections: Theory, Computation and Experiment
, edited by
W.
Domcke
,
D.
Yarkony
, and
H.
Köppel
(
World Scientific
,
Singapore
,
2011
).
3.
F.
Plasser
,
M.
Barbatti
,
A.
Aquino
, and
H.
Lischka
,
Theor. Chem. Acc.
131
,
1073
(
2012
).
4.
B. F. E.
Curchod
,
U.
Rothlisberger
, and
I.
Tavernelli
,
ChemPhysChem
14
,
1314
(
2013
).
5.
T.
Mori
,
W. J.
Glover
,
M. S.
Schuurman
, and
T. J.
Martinez
,
J. Phys. Chem. A
116
,
2808
(
2011
).
6.
M.
Barbatti
,
Z.
Lan
,
R.
Crespo-Otero
,
J. J.
Szymczak
,
H.
Lischka
, and
W.
Thiel
,
J. Chem. Phys.
137
,
22A503
(
2012
).
7.
M.
Sapunar
,
A.
Ponzi
,
S.
Chaiwongwattana
,
M.
Mališ
,
A.
Prlj
,
P.
Decleva
, and
N.
Došlić
,
Phys. Chem. Chem. Phys.
17
,
19012
(
2015
).
8.
V.
Stert
,
H.
Lippert
,
H.-H.
Ritze
, and
W.
Radloff
,
Chem. Phys. Lett.
388
,
144
(
2004
).
11.
T.
Suzuki
,
Int. Rev. Phys. Chem.
31
,
265
(
2012
).
12.
S.
Ullrich
,
T.
Schultz
,
M. Z.
Zgierski
, and
A.
Stolow
,
J. Am. Chem. Soc.
126
,
2262
(
2004
).
13.
H.
Satzger
,
D.
Townsend
,
M.
Zgierski
,
S.
Patchkovskii
,
S.
Ullrich
, and
A.
Stolow
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
10196
(
2006
).
14.
T.
Horio
,
T.
Fuji
,
Y.-I.
Suzuki
, and
T.
Suzuki
,
J. Am. Chem. Soc.
131
,
10392
(
2009
).
15.
Y.-I.
Suzuki
,
T.
Fuji
,
T.
Horio
, and
T.
Suzuki
,
J. Chem. Phys.
132
,
174302
(
2010
).
16.
T.
Fuji
,
Y.-I.
Suzuki
,
T.
Horio
,
T.
Suzuki
,
R.
Mitrić
,
U.
Werner
, and
V.
Bonačić-Koutecký
,
J. Chem. Phys.
133
,
234303
(
2010
).
17.
Y.-I.
Suzuki
,
T.
Horio
,
T.
Fuji
, and
T.
Suzuki
,
J. Chem. Phys.
134
,
184313
(
2011
).
18.
T.
Suzuki
,
J. Phys. B: At., Mol. Opt. Phys.
47
,
124001-1
(
2014
).
19.
G.
Wu
,
S. P.
Neville
,
O.
Schalk
,
T.
Sekikawa
,
M. N. R.
Ashfold
,
G. A.
Worth
, and
A.
Stolow
,
J. Chem. Phys.
142
,
074302
(
2015
).
20.
G.
Wu
,
P.
Hockett
, and
A.
Stolow
,
Phys. Chem. Chem. Phys.
13
,
18447
(
2011
).
21.
A.
Ponzi
,
C.
Angeli
,
R.
Cimiraglia
,
S.
Coriani
, and
P.
Decleva
,
J. Chem. Phys.
140
,
204304
(
2014
).
22.
H.
Bachau
,
E.
Cormier
,
P.
Decleva
,
J. E.
Hansen
, and
F.
Martin
,
Rep. Prog. Phys.
64
,
1815
(
2001
).
23.
H.
Tao
,
T. K.
Allison
,
T. W.
Wright
,
A. M.
Stooke
,
C.
Khurmi
,
J.
van Tilborg
,
Y.
Liu
,
R. W.
Falcone
,
A.
Belkacem
, and
T. J.
Martinez
,
J. Chem. Phys.
134
,
244306
(
2011
).
24.
A.
Humeniuk
,
M.
Wohlgemuth
,
T.
Suzuki
, and
R.
Mitrić
,
J. Chem. Phys.
139
,
134104
(
2013
).
25.
G.
Tomasello
,
A.
Humeniuk
, and
R.
Mitrić
,
J. Phys. Chem. A
118
,
8437
(
2014
).
26.
C. M.
Oana
and
A. I.
Krylov
,
J. Chem. Phys.
127
,
234106
(
2007
).
27.
M.
Walter
and
H.
Häkkinen
,
New J. Phys.
10
,
043018
(
2008
).
28.
C. M.
Oana
and
A. I.
Krylov
,
J. Chem. Phys.
131
,
124114
(
2009
).
29.
U.
Werner
,
R.
Mitrić
, and
V.
Bonačić-Koutecký
,
J. Chem. Phys.
132
,
174301
(
2010
).
30.
D. M. P.
Holland
,
L.
Karlsson
, and
W.
von Niessen
,
J. Electron Spectrosc. Relat. Phenom.
113
,
221
(
2001
).
31.
Y.-I.
Suzuki
and
T.
Suzuki
,
J. Phys. Chem. A
112
,
402
(
2008
).
32.
D.
Toffoli
,
M.
Stener
,
G.
Fronzoni
, and
P.
Decleva
,
Chem. Phys.
276
,
25
(
2002
).
33.
H. J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, molpro, version 2012.1, a package ofab initio programs, 2012, see http://www.molpro.net.
34.
TURBOMOLE V6.4 2012, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007, available from http://www.turbomole.com.
35.
M.
Stener
,
G.
Fronzoni
, and
P.
Decleva
,
J. Chem. Phys.
122
,
234301
(
2005
).
36.
M. E.
Casida
, in
Recent Developments and Applications in Modern Density-Functional Theory
, edited by
J. M.
Seminario
(
Elsevier
,
Singapore
,
1996
).
37.
E.
Tapavicza
,
I.
Tavernelli
, and
U.
Rothlisberger
,
Phys. Rev. Lett.
98
,
023001-1
(
2007
).
38.
T. X.
Carroll
,
M. G.
Zahl
,
K. J.
Børve
,
L. J.
Sæthre
,
P.
Decleva
,
A.
Ponzi
,
J. J.
Kas
,
F. D.
Vila
,
J. J.
Rehr
, and
T.
Darrah Thomas
,
J. Chem. Phys.
138
,
234310
(
2013
).
39.
R. K.
Kushawaha
,
M.
Patanen
,
R.
Guillemin
,
L.
Journel
,
C.
Miron
,
M.
Simon
,
M. N.
Piancastelli
, and
P.
Decleva
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
15201
(
2013
).
40.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C. F.
Guerra
,
S. J. A.
van Gisbergen
,
J.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
41.
ADF2014, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
42.
C. F.
Fischer
and
M.
Idrees
,
Comput. Phys.
3
,
53
(
1989
).
43.
M.
Brosolo
and
P.
Decleva
,
Chem. Phys.
159
,
185
(
1992
).
44.
M.
Brosolo
,
P.
Decleva
, and
A.
Lisini
,
Comput. Phys. Commun.
71
,
207
(
1992
).
45.
N.
Chandra
,
J. Phys. B: At. Mol. Phys.
20
,
3405
(
1987
).
46.
R.
van Leeuwen
and
E.
Baerends
,
Phys. Rev. A
49
,
2421
(
1994
).
47.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
48.
C.
Angeli
,
R.
Cimiraglia
,
S.
Evangelisti
,
T.
Leininger
, and
J. P.
Malrieu
,
J. Chem. Phys.
114
,
10252
(
2001
).
49.
C.
Angeli
,
R.
Cimiraglia
, and
J. P.
Malrieu
,
J. Chem. Phys.
117
,
9138
(
2002
).
50.
K.
Kimura
,
S.
Katsumata
,
Y.
Achiba
,
T.
Yamazaki
, and
S.
Iwata
,
Handbook of He I Photoelectron Spectra of Fundamental Organic Molecules
(
Japan Scientific
,
Tokyo
,
1981
).
51.
P. R.
Keller
,
J. W.
Taylor
,
T. A.
Carlson
, and
F. A.
Grimm
,
J. Electron Spectrosc. Relat. Phenom.
33
,
333
(
1984
).
52.
M.
Pastore
,
C.
Angeli
, and
R.
Cimiraglia
,
Chem. Phys. Lett.
426
,
445
(
2006
).
53.
F.
Mata
,
M. C.
Martin
, and
G. O.
Sørensen
,
J. Mol. Struct.
48
,
157
(
1978
).
You do not currently have access to this content.