We report a new method to compute the Interatomic Coulombic Decay (ICD) widths for large clusters which relies on the combination of the projection-operator formalism of scattering theory and the diatomics-in-molecules approach. The total and partial ICD widths of a cluster are computed from the energies and coupling matrix elements of the atomic and diatomic fragments of the system. The method is applied to the helium trimer and the results are compared to fully ab initio widths. A good agreement between the two sets of data is shown. Limitations of the present method are also discussed.

1.
N.
Moiseyev
,
Non-Hermitian Quantum Mechanics
(
Cambridge University Press
,
2011
).
3.
L. S.
Cederbaum
,
J.
Zobeley
, and
F.
Tarantelli
,
Phys. Rev. Lett.
79
,
4778
(
1997
).
4.
S.
Marburger
,
O.
Kugeler
,
U.
Hergenhahn
, and
T.
Möller
,
Phys. Rev. Lett.
90
,
203401
(
2003
).
5.
T.
Jahnke
 et al,
Phys. Rev. Lett.
93
,
163401
(
2004
).
6.
M.
Mucke
 et al,
Nat. Phys.
6
,
143
(
2010
).
7.
T.
Jahnke
 et al,
Nat. Phys.
6
,
139
(
2010
).
8.
V.
Averbukh
 et al,
Dynamical Processes in Atomic and Molecular Physics
(
Bentham Science Publishers
,
2012
), Vol.
29
.
9.
V.
Averbukh
 et al,
J. Electron Spectrosc. Relat. Phenom.
183
,
36
(
2011
).
10.
U.
Hergenhahn
,
J. Electron Spectrosc. Relat. Phenom.
184
,
78
(
2011
).
11.
T.
Jahnke
,
J. Phys. B: At., Mol. Opt. Phys.
48
,
082001
(
2015
).
12.
T.
Pflüger
,
A.
Senftleben
,
X.
Ren
,
A.
Dorn
, and
J.
Ullrich
,
Phys. Rev. Lett.
107
,
223201
(
2011
).
13.
H. K.
Kim
 et al,
Proc. Natl. Acad. Sci. U. S. A.
108
,
11821
(
2011
).
14.
H. K.
Kim
 et al,
Phys. Rev. A
88
,
042707
(
2013
).
15.
H. K.
Kim
 et al,
Phys. Rev. A
89
,
022704
(
2014
).
16.
T.
Jahnke
 et al,
Phys. Rev. Lett.
99
,
153401
(
2007
).
17.
N.
Sisourat
 et al,
Nat. Phys.
6
,
508
(
2010
).
18.
V.
Averbukh
and
P.
Kolorenč
,
Phys. Rev. Lett.
103
,
183001
(
2009
).
19.
A. I.
Kuleff
,
K.
Gokhberg
,
S.
Kopelke
, and
L. S.
Cederbaum
,
Phys. Rev. Lett.
105
,
043004
(
2010
).
20.
S. D.
Stoychev
,
A. I.
Kuleff
,
F.
Tarantelli
, and
L. S.
Cederbaum
,
J. Chem. Phys.
129
,
074307
(
2008
).
21.
P. V.
Demekhin
,
S.
Scheit
,
S. D.
Stoychev
, and
L. S.
Cederbaum
,
Phys. Rev. A
78
,
043421
(
2008
).
22.
K.
Kreidi
 et al,
Phys. Rev. A
78
,
043422
(
2008
).
23.
T.
Ouchi
 et al,
Phys. Rev. A
83
,
053415
(
2011
).
24.
K.
Gokhberg
,
P.
Kolorenč
,
A. I.
Kuleff
, and
L. S.
Cederbaum
,
Nature
505
,
661
(
2014
).
25.
F.
Trinter
 et al,
Nature
505
,
664
(
2014
).
26.
R.
Santra
and
L. S.
Cederbaum
,
Phys. Rep.
368
,
1
(
2002
).
27.
N.
Vaval
and
L. S.
Cederbaum
,
J. Chem. Phys.
126
,
164110
(
2007
).
28.
A.
Ghosh
,
S.
Pal
, and
N.
Vaval
,
J. Chem. Phys.
139
,
064112
(
2013
).
29.
A.
Ghosh
,
S.
Pal
, and
N.
Vaval
,
Mol. Phys.
112
,
669
(
2014
).
30.
V.
Averbukh
and
L. S.
Cederbaum
,
J. Chem. Phys.
123
,
204107
(
2005
).
31.
V.
Averbukh
and
L. S.
Cederbaum
,
J. Chem. Phys.
125
,
094107
(
2006
).
32.
E.
Fasshauer
,
P.
Kolorenč
, and
M.
Pernpointner
,
J. Chem. Phys.
142
,
144106
(
2015
).
33.
F. O.
Ellison
,
J. Am. Chem. Soc.
85
,
3540
(
1963
).
34.
J. C.
Tully
,
J. Chem. Phys.
58
,
1396
(
1973
).
35.
J. C.
Tully
,
J. Chem. Phys.
59
,
5122
(
1973
).
36.
P. J.
Kuntz
and
J.
Valldorf
,
Z. Phys. D: At., Mol. Clusters
8
,
195
(
1988
).
37.
R. B.
Gerber
,
D.
Shemesh
,
M. E.
Varner
,
J.
Kalinowski
, and
B.
Hirshberg
,
Phys. Chem. Chem. Phys.
16
,
9760
(
2014
), and references therein.
38.
D.
Bonhommeau
,
A.
Viel
, and
N.
Halberstadt
,
J. Chem. Phys.
120
,
11359
(
2004
).
39.
D.
Bonhommeau
,
M.
Lewerenz
, and
N.
Halberstadt
,
J. Chem. Phys.
128
,
054302
(
2008
).
41.
H.
Feschbach
,
Rev. Mod. Phys.
36
,
1076
(
1964
).
43.
A. K.
Belyaev
,
A. S.
Tiukanov
, and
W.
Domcke
,
Phys. Rev. A
65
,
012508
(
2001
).
44.
A. K.
Belyaev
,
A. S.
Tiukanov
, and
W.
Domcke
,
Phys. Scr.
80
,
048124
(
2009
).
45.
N. V.
Kryzhevoi
,
V.
Averbukh
, and
L. S.
Cederbaum
,
Phys. Rev. B
76
,
094513
(
2007
).
46.
E.
Fasshauer
,
M.
Förstel
,
S.
Pallmann
,
M.
Pernpointner
, and
U.
Hergenhahn
,
New J. Phys.
16
,
103026
(
2014
).
47.
R. A.
Aziz
and
M. J.
Slaman
,
J. Chem. Phys.
94
,
8047
(
1991
).
48.
K. T.
Tang
,
J. P.
Toennies
, and
C. L.
Yiu
,
Phys. Rev. Lett.
74
,
1546
(
1995
).
49.
M.
Przybytek
,
W.
Cencek
,
J.
Komasa
,
G.
Łach
,
B.
Jeziorski
, and
K.
Szalewicz
,
Phys. Rev. Lett.
104
,
183003
(
2010
).
50.
J.
Xie
,
B.
Poirier
, and
G. I.
Gellene
,
J. Chem. Phys.
122
,
184310
(
2005
).
51.
P.
Kolorenč
,
N. V.
Kryzhevoi
,
N.
Sisourat
, and
L. S.
Cederbaum
,
Phys. Rev. A
82
,
013422
(
2010
).
52.
M.
Lewerenz
,
J. Chem. Phys.
106
,
4596
(
1997
).
53.
J.
Voigtsberger
,
S.
Zeller
,
J.
Becht
,
N.
Neumann
,
F.
Sturm
,
H.-K.
Kim
,
M.
Waitz
,
F.
Trinter
,
M.
Kunitski
,
A.
Kalinin
,
J.
Wu
,
W.
Schöllkopf
,
D.
Bressanini
,
A.
Czasch
,
J. B.
Williams
,
K.
Ullmann-Pfleger
,
L. Ph H.
Schmidt
,
M. S.
Schöffler
,
R. E.
Grisenti
,
T.
Jahnke
, and
R.
Dörner
,
Nat. Commun.
5
,
5765
(
2014
).
54.
D.
Bressanini
and
G.
Morosi
,
J. Phys. Chem. A
115
,
10880
(
2011
).
55.
P.
Kolorenč
and
N.
Sisourat
,
J. Chem. Phys.
143
,
224310
(
2015
).
56.
V.
Averbukh
,
I. B.
Müller
, and
L. S.
Cederbaum
,
Phys. Rev. Lett.
93
,
263002
(
2011
).
57.
J.
Zobeley
,
R.
Santra
, and
L. S.
Cederbaum
,
J. Chem. Phys.
115
,
5076
(
2001
).
58.
K.
Sakai
 et al,
Phys. Rev. Lett.
106
,
033401
(
2011
).
You do not currently have access to this content.