We describe further details of the stochastic coupled cluster method and a diagnostic of such calculations, the shoulder height, akin to the plateau found in full configuration interaction quantum Monte Carlo. We describe an initiator modification to stochastic coupled cluster theory and show that initiator calculations can at times be extrapolated to the unbiased limit. We apply this method to the 3D 14-electron uniform electron gas and present complete basis set limit values of the coupled cluster singles and doubles (CCSD) and previously unattainable coupled cluster singles and doubles with perturbative triples (CCSDT) correlation energies for up to rs = 2, showing a requirement to include triple excitations to accurately calculate energies at high densities.

1.
A. J. W.
Thom
,
Phys. Rev. Lett.
105
,
263004
(
2010
).
2.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
3.
J.
Čížek
and
J.
Paldus
,
Int. J. Quantum Chem.
5
,
359
(
1971
).
4.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
5.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
6.
D. G.
Liakos
,
M.
Sparta
,
M. K.
Kesharwani
,
J. M. L.
Martin
, and
F.
Neese
,
J. Chem. Theory Comput.
11
,
1525
(
2015
).
7.
J. E.
Subotnik
,
A.
Sodt
, and
M.
Head-Gordon
,
J. Chem. Phys.
125
,
074116
(
2006
).
8.
M.
Schütz
,
Phys. Chem. Chem. Phys.
4
,
3941
(
2002
).
9.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
10.
G. H.
Booth
and
A.
Alavi
,
J. Chem. Phys.
132
,
174104
(
2010
).
11.
D.
Cleland
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
132
,
41103
(
2010
).
12.
G. H.
Booth
,
D.
Cleland
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
135
,
084104
(
2011
).
13.
D.
Cleland
,
G. H.
Booth
,
C.
Overy
, and
A.
Alavi
,
J. Chem. Theory Comput.
8
,
4138
(
2012
).
14.
G. H.
Booth
,
D.
Cleland
,
A.
Alavi
, and
D. P.
Tew
,
J. Chem. Phys.
137
,
164112
(
2012
).
15.
C.
Overy
,
G. H.
Booth
,
N. S.
Blunt
,
J. J.
Shepherd
,
D.
Cleland
, and
A.
Alavi
,
J. Chem. Phys.
141
,
244117
(
2014
).
16.
R. E.
Thomas
,
D.
Opalka
,
C.
Overy
,
P. J.
Knowles
,
A.
Alavi
, and
G. H.
Booth
,
J. Chem. Phys.
143
,
054108
(
2015
).
17.
N. S.
Blunt
,
A.
Alavi
, and
G. H.
Booth
,
Phys. Rev. Lett.
115
,
050603
(
2015
).
18.
N. S.
Blunt
,
S. D.
Smart
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
143
,
134117
(
2015
).
19.
J. J.
Shepherd
,
A.
Grüneis
,
G. H.
Booth
,
G.
Kresse
, and
A.
Alavi
,
Phys. Rev. B
86
,
035111
(
2012
).
20.
J. J.
Shepherd
,
G.
Booth
,
A.
Grüneis
, and
A.
Alavi
,
Phys. Rev. B
85
,
081103
(
2012
).
21.
J. J.
Shepherd
,
G. E.
Scuseria
, and
J. S.
Spencer
,
Phys. Rev. B
90
,
155130
(
2014
).
22.
A.
Grüneis
,
G. H.
Booth
,
M.
Marsman
,
J.
Spencer
,
A.
Alavi
, and
G.
Kresse
,
J. Chem. Theory Comput.
7
,
2780
(
2011
).
23.
G. H.
Booth
,
A.
Grüneis
,
G.
Kresse
, and
A.
Alavi
,
Nature
493
,
365
(
2013
).
24.
F. R.
Manby
,
D.
Alfè
, and
M. J.
Gillan
,
Phys. Chem. Chem. Phys.
8
,
5178
(
2006
).
25.
M.
Marsman
,
A.
Grüneis
,
J.
Paier
, and
G.
Kresse
,
J. Chem. Phys.
130
,
184103
(
2009
).
26.
A.
Grüneis
,
J. Chem. Phys.
143
,
102817
(
2015
).
27.
M.
Del Ben
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Phys.
143
,
102803
(
2015
).
28.
29.
J. B.
Anderson
,
J. Chem. Phys.
63
,
1499
(
1975
).
30.
C. J.
Umrigar
,
M. P.
Nightingale
, and
K. J.
Runge
,
J. Chem. Phys.
99
,
2865
(
1993
).
31.
J. S.
Spencer
,
N. S.
Blunt
, and
W. M.
Foulkes
,
J. Chem. Phys.
136
,
054110
(
2012
).
32.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
33.
A. K.
Wilson
,
T.
van Mourik
, and
T. H.
Dunning
, Jr.
,
J. Mol. Struct.: THEOCHEM
388
,
339
(
1997
).
34.
R. S. T.
Franklin
,
J. S.
Spencer
,
A.
Zoccante
, and
A. J. W.
Thom
,
J. Chem. Phys.
144
,
044111
(
2016
); e-print arXiv:1511.08129.
35.
H.
Flyvbjerg
and
H. G.
Petersen
,
J. Chem. Phys.
91
,
461
(
1989
).
36.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
W.
Györffy
,
D.
Kats
,
T.
Korona
,
R.
Lindh
 et al, molpro, version 2010.2, a package of ab initio programs, 2010, see http://www.molpro.net.
37.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
WIREs: Comput. Mol. Sci.
2
,
242
(
2012
).
38.
M.
Kállay
,
Z.
Roli
,
J.
Csonto
,
I.
Ladjánszk
,
L.
Szeged
,
B.
Ladóczk
, and
G.
Samu
, MRCC, a quantum chemical program suite, 2011, http://www.mrcc.hu.
39.
T.
Williams
,
C.
Kelley
 et al, Gnuplot 4.6: An interactive plotting program, http://www.gnuplot.info (2013).
40.
R. F.
Bishop
and
K. H.
Lührmann
,
Phys. Rev. B
17
,
3757
(
1978
).
41.
R. F.
Bishop
and
K. H.
Lührmann
,
Phys. Rev. B
26
,
5523
(
1982
).
42.
P.
López Ríos
,
A.
Ma
,
N. D.
Drummond
,
M. D.
Towler
, and
R. J.
Needs
,
Phys. Rev. E
74
,
066701
(
2006
).
43.
J. J.
Shepherd
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
136
,
244101
(
2012
).
44.
J.
McClain
,
J.
Lischner
,
T.
Watson
,
D. A.
Matthews
,
E.
Ronca
,
S. G.
Louie
,
T. C.
Berkelbach
, and
G.
K.-L. Chan
, e-print arXiv:1512.04556 (2015).
45.
A.
Roggero
,
A.
Mukherjee
, and
F.
Pederiva
,
Phys. Rev. B
88
,
115138
(
2013
).
46.
J. J.
Shepherd
and
A.
Grüneis
,
Phys. Rev. Lett.
110
,
226401
(
2013
).
47.
J. J.
Shepherd
,
T. M.
Henderson
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
112
,
133002
(
2014
).
48.
J. J.
Shepherd
,
A.
Grüneis
,
G.
Booth
,
G.
Kresse
, and
A.
Alavi
,
Phys. Rev. B
86
,
035111
(
2012
).
49.
See http://www.imperial.ac.uk/ict/services/teachingandresearchservices/highperformancecomputing for information about Imperial College High Performance Computing Facilities.
50.
G. H.
Booth
,
S. D.
Smart
, and
A.
Alavi
,
Mol. Phys.
112
,
1855
(
2014
).
51.
See http://www.hande.org.uk for information about the HANDE program.
52.
J. S.
Spencer
,
N. S.
Blunt
,
W. A.
Vigor
,
F. D.
Malone
,
W. M. C.
Foulkes
,
J. J.
Shepherd
, and
A. J. W.
Thom
,
J. Open Res. Software
3
(
1
),
e9
(
2015
).
53.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
 et al,
Mol. Phys.
113
,
184
(
2015
).
54.
J.
Spencer
and
A. J. W.
Thom
, Data from “Developments in Stochastic Coupled Cluster Theory: The initiator approximation and application to the Uniform Electron Gas,” 2015, URL: .
55.
J.
Spencer
and
A. J. W.
Thom
, Additional Data from “Developments in Stochastic Coupled Cluster Theory: The initiator approximation and application to the Uniform Electron Gas,” 2015, URL: .
56.
U.
Wolff
,
Comput. Phys. Commun.
156
,
143
(
2004
).
57.
R. M.
Lee
,
G. J.
Conduit
,
N.
Nemec
,
P.
López Rios
, and
N. D.
Drummond
,
Phys. Rev. E
83
,
066706
(
2011
).
59.
J. D.
Hunter
,
Comput. Sci. Eng.
9
,
90
(
2007
).
60.
W. A.
Vigor
,
J. S.
Spencer
,
M. J.
Bearpark
, and
A. J. W.
Thom
,
J. Chem. Phys.
142
,
104101
(
2015
).
61.

More formally O(N3M4) where M is the number of basis functions in the system.

62.

We have adopted δτ rather than τ as in Ref. 1 so as to be more consistent with the notation of Alavi et al.

63.

The converse, that solutions to the iteration will also be coupled cluster solutions, is not necessarily true, though we have not found any situations where this is the case. Indeed there is no guarantee that this iteration procedure will converge, though with a sensible choice of δτ it appears to be convergent for primarily single-reference systems.

64.

Note that our previous publication used the word excitor for both the operator and the particle.

65.

This makes use of the PELE suite (see https://github.com/pele-python/pele), and we will describe details of this elsewhere.

You do not currently have access to this content.