A real-space high order finite difference method is used to analyze the effect of spherical domain size on the Hartree-Fock (and density functional theory) virtual eigenstates. We show the domain size dependence of both positive and negative virtual eigenvalues of the Hartree-Fock equations for small molecules. We demonstrate that positive states behave like a particle in spherical well and show how they approach zero. For the negative eigenstates, we show that large domains are needed to get the correct eigenvalues. We compare our results to those of Gaussian basis sets and draw some conclusions for real-space, basis-sets, and plane-waves calculations.

1.
A.
Szabo
and
N.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
,
Dover Books on Chemistry Series
(
Dover Publications
,
1989
).
2.
J.
Garza
,
J. A.
Nichols
, and
D. A.
Dixon
,
J. Chem. Phys.
113
,
6029
(
2000
).
3.
F.
Gygi
and
A.
Baldereschi
,
Phys. Rev. B
34
,
4405
(
1986
).
4.
S.
Massidda
,
M.
Posternak
, and
A.
Baldereschi
,
Phys. Rev. B
48
,
5058
(
1993
).
5.
I.
Duchemin
and
F.
Gygi
,
Comput. Phys. Commun.
181
,
855
(
2010
).
6.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
7.
J.
Paier
,
M.
Marsman
,
K.
Hummer
,
G.
Kresse
,
I. C.
Gerber
, and
J. G.
Ángyán
,
J. Chem. Phys.
124
,
154709
(
2006
).
8.
H.
Sekino
,
Y.
Maeda
,
T.
Yanai
, and
R. J.
Harrison
,
J. Chem. Phys.
129
,
034111
(
2008
).
9.
T.
Yanai
,
G. I.
Fann
,
G.
Beylkin
, and
R. J.
Harrison
,
Phys. Chem. Chem. Phys.
17
,
31405
(
2015
).
10.
B. N.
Khoromskij
,
V.
Khoromskaia
, and
H.-J.
Flad
,
SIAM J. Sci. Comput.
33
,
45
(
2011
).
11.
See supplementary material at http://dx.doi.org/10.1063/1.4942187 for examples of the same behavior of dft l(s)da and pbe0 for the cases of H2 and C2H6+, as well as additional hartree-fock calculations.
12.
J.
Chelikowsky
,
N.
Troullier
, and
Y.
Saad
,
Phys. Rev. Lett.
72
,
1240
(
1994
).
13.
J.
Chelikowsky
,
N.
Troullier
,
K.
Wu
, and
Y.
Saad
,
Phys. Rev. B
50
,
11355
(
1994
).
14.
I.
Vasiliev
,
S.
Öğüt
, and
J. R.
Chelikowsky
,
Phys. Rev. B
65
,
115416
(
2002
).
15.
L.
Kronik
,
A.
Makmal
,
M. L.
Tiago
,
M. M. G.
Alemany
,
M.
Jain
,
X.
Huang
,
Y.
Saad
, and
J. R.
Chelikowsky
,
Phys. Status Solidi B
243
,
1063
(
2006
).
16.
J.
Han
,
M. L.
Tiago
,
T.-L.
Chan
, and
J. R.
Chelikowsky
,
J. Chem. Phys.
129
,
144109
(
2008
).
17.
A.
Natan
,
A.
Benjamini
,
D.
Naveh
,
L.
Kronik
,
M.
Tiago
,
S.
Beckman
, and
J.
Chelikowsky
,
Phys. Rev. B
78
,
075109
(
2008
).
18.
S.
Kümmel
,
L.
Kronik
, and
J. P.
Perdew
,
Phys. Rev. Lett.
93
,
213002
(
2004
).
19.
S.
Kümmel
and
L.
Kronik
,
Comput. Mater. Sci.
35
,
321
(
2006
).
20.
T.
Körzdörfer
,
S.
Kümmel
, and
M.
Mundt
,
J. Chem. Phys.
129
,
014110
(
2008
).
21.
A.
Natan
,
Phys. Chem. Chem. Phys.
17
,
31510
(
2015
).
22.
V.
Khoromskaia
and
B. N.
Khoromskij
,
Comput. Phys. Commun.
185
,
3162
(
2014
).
23.
S. A.
Losilla
and
D.
Sundholm
,
J. Chem. Phys.
136
,
214104
(
2012
).
24.
A.
Cerioni
,
L.
Genovese
,
A.
Mirone
, and
V. A.
Sole
,
J. Chem. Phys.
137
,
134108
(
2012
).
25.
N. D. M.
Hine
,
J.
Dziedzic
,
P. D.
Haynes
, and
C.-K.
Skylaris
,
J. Chem. Phys.
135
,
204103
(
2011
).
26.
M.
Zuzovski
,
A.
Boag
, and
A.
Natan
,
Phys. Chem. Chem. Phys.
17
,
31550
(
2015
).
27.
X.
Wu
,
A.
Selloni
, and
R.
Car
,
Phys. Rev. B
79
,
085102
(
2009
).
28.
M.
Valiev
,
E.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T.
Straatsma
,
H. V.
Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T.
Windus
, and
W.
de Jong
,
Comput. Phys. Commun.
181
,
1477
(
2010
).
29.
NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 16a, edited by R. D. Johnson III (NIST, 2013), http://cccbdb.nist.gov/.
30.
MATLAB, version 7.10.0 (R2010a), The MathWorks, Inc., Natick, Massachusetts, 2010.
31.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
(
2011
).
32.
W. A.
Al-Saidi
,
E. J.
Walter
, and
A. M.
Rappe
,
Phys. Rev. B
77
,
075112
(
2008
).
33.
B.
Agarwal
and
H.
Prakash
,
Quantum Mechanics
(
PHI Learning
,
1996
).
34.
G.
Samsonidze
,
M.
Jain
,
J.
Deslippe
,
M. L.
Cohen
, and
S. G.
Louie
,
Phys. Rev. Lett.
107
,
186404
(
2011
).
35.
L.
Hung
,
K.
Baishya
, and
S.
Öğüt
,
Phys. Rev. B
90
,
165424
(
2014
).
36.
J.
Katriel
and
E. R.
Davidson
,
Proc. Natl. Acad. Sci. U. S. A.
77
,
4403
(
1980
).
37.
C.-O.
Almbladh
and
U.
von Barth
,
Phys. Rev. B
31
,
3231
(
1985
).
38.
J. B.
Krieger
,
Yan
Li
, and
G. J.
Iafrate
,
Phys. Rev. A
46
,
5453
(
1992
).

Supplementary Material

You do not currently have access to this content.