The development and implementation of increasingly accurate methods for electronic structure calculations mean that, for many atomistic simulation problems, treating light nuclei as classical particles is now one of the most serious approximations. Even though recent developments have significantly reduced the overhead for modeling the quantum nature of the nuclei, the cost is still prohibitive when combined with advanced electronic structure methods. Here we present how multiple time step integrators can be combined with ring-polymer contraction techniques (effectively, multiple time stepping in imaginary time) to reduce virtually to zero the overhead of modelling nuclear quantum effects, while describing inter-atomic forces at high levels of electronic structure theory. This is demonstrated for a combination of MP2 and semi-local DFT applied to the Zundel cation. The approach can be seamlessly combined with other methods to reduce the computational cost of path integral calculations, such as high-order factorizations of the Boltzmann operator or generalized Langevin equation thermostats.

1.
M.
Del Ben
,
M.
Schönherr
,
J.
Hutter
, and
J.
VandeVondele
,
J. Phys. Chem. Lett.
4
,
3753
(
2013
).
2.
M.
Del Ben
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Phys.
143
,
054506
(
2015
).
3.
A.
Zen
,
Y.
Luo
,
G.
Mazzola
,
L.
Guidoni
, and
S.
Sorella
,
J. Chem. Phys.
142
,
144111
(
2015
).
4.
R. P.
Feynman
and
A. R.
Hibbs
,
Quantum Mechanics and Path Integrals
(
McGraw-Hill
,
New York
,
1964
).
5.
D.
Chandler
and
P. G.
Wolynes
,
J. Chem. Phys.
74
,
4078
(
1981
).
6.
M.
Parrinello
and
A.
Rahman
,
J. Chem. Phys.
80
,
860
(
1984
).
7.
S. S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
115
,
7832
(
2001
).
8.
A.
Pérez
and
M. E.
Tuckerman
,
J. Chem. Phys.
135
,
064104
(
2011
).
9.
I.
Poltavsky
and
A.
Tkatchenko
,
Chem. Sci.
7
,
1368
(
2016
).
10.
M.
Ceriotti
,
G.
Bussi
, and
M.
Parrinello
,
Phys. Rev. Lett.
103
,
30603
(
2009
).
11.
M.
Ceriotti
,
D. E.
Manolopoulos
, and
M.
Parrinello
,
J. Chem. Phys.
134
,
84104
(
2011
).
12.
M.
Ceriotti
and
D. E.
Manolopoulos
,
Phys. Rev. Lett.
109
,
100604
(
2012
).
13.
A. B.
Poma
and
L.
Delle Site
,
Phys. Rev. Lett.
104
,
250201
(
2010
).
14.
T. E.
Markland
and
D. E.
Manolopoulos
,
J. Chem. Phys.
129
,
024105
(
2008
).
15.
T. E.
Markland
and
D. E.
Manolopoulos
,
Chem. Phys. Lett.
464
,
256
(
2008
).
16.
G. J.
Martyna
,
M. E.
Tuckerman
, and
M. L.
Klein
,
J. Chem. Phys.
97
,
2635
(
1992
).
17.
R.
Zhou
,
E.
Harder
,
H.
Xu
, and
B. J.
Berne
,
J. Chem. Phys.
115
,
2348
(
2001
).
18.
M. J.
Ferrarotti
,
S.
Bottaro
,
A.
Pérez-Villa
, and
G.
Bussi
,
J. Chem. Theory Comput.
11
,
139
(
2015
).
19.
M.
Guidon
,
F.
Schiffmann
,
J.
Hutter
, and
J.
Vandevondele
,
J. Chem. Phys.
128
,
214104
(
2008
).
20.
J.
VandeVondele
and
U.
Rothlisberger
,
J. Chem. Phys.
113
,
4863
(
2000
).
21.
R.
Iftimie
,
D.
Salahub
,
D.
Wei
, and
J.
Schofield
,
J. Chem. Phys.
113
,
4852
(
2000
).
22.
M. J.
McGrath
,
J. I.
Siepmann
,
I.-F. W.
Kuo
,
C. J.
Mundy
,
J.
VandeVondele
,
J.
Hutter
,
F.
Mohamed
, and
M.
Krack
,
ChemPhysChem
6
,
1894
(
2005
).
23.
R. P.
Steele
,
J. Chem. Phys.
139
,
011102
(
2013
).
24.
N.
Luehr
,
T. E.
Markland
, and
T. J.
Martínez
,
J. Chem. Phys.
140
,
084116
(
2014
).
25.
S.
Fatehi
and
R. P.
Steele
,
J. Chem. Theory Comput.
11
,
884
(
2015
).
26.
S.
Habershon
,
T. E.
Markland
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
131
,
024501
(
2009
).
27.
R.
Iftimie
and
J.
Schofield
,
J. Chem. Phys.
114
,
6763
(
2001
).
28.
H. Y.
Geng
,
J. Comput. Phys.
283
,
299
(
2015
).
29.
M.
Ceriotti
,
J.
More
, and
D. E.
Manolopoulos
,
Comput. Phys. Commun.
185
,
1019
(
2014
).
30.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
31.
O.
Marsalek
and
T.
Markland
,
J. Chem. Phys.
144
,
054112
(
2016
).
32.
See supplementary material at http://dx.doi.org/10.1063/1.4941091 for a snapshot of the development code, and examples of the input files we used for some of the simulations reported here.
33.
Q.
Ma
,
J. A.
Izaguirre
, and
R. D.
Skeel
,
SIAM J. Sci. Comput.
24
,
1951
(
2003
).
34.
E.
Barth
and
T.
Schlick
,
J. Chem. Phys.
109
,
1633
(
1998
).
35.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6168
(
1994
).
36.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
121
,
3368
(
2004
).
37.
M.
Rossi
,
M.
Ceriotti
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
140
,
234116
(
2014
).
38.
J. A.
Morrone
,
T. E.
Markland
,
M.
Ceriotti
, and
B. J.
Berne
,
J. Chem. Phys.
134
,
014103
(
2011
).
39.
M.
Ceriotti
,
M.
Parrinello
,
T. E.
Markland
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
133
,
124104
(
2010
).
40.
M.
Rossi
,
H.
Liu
,
F.
Paesani
,
J.
Bowman
, and
M.
Ceriotti
,
J. Chem. Phys.
141
,
181101
(
2014
).
41.
S.
Duane
,
A. D.
Kennedy
,
B. J.
Pendleton
, and
D.
Roweth
,
Phys. Lett. B
195
,
216
(
1987
).
42.
M.
Ceriotti
,
G. A. R.
Brain
,
O.
Riordan
, and
D. E.
Manolopoulos
,
Proc. R. Soc. A
468
,
2
(
2011
).
43.
M.
Del Ben
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
9
,
2654
(
2013
).
44.
M.
Del Ben
,
O.
Schütt
,
T.
Wentz
,
P.
Messmer
,
J.
Hutter
, and
J.
VandeVondele
,
Comput. Phys. Commun.
187
,
120
(
2015
).
45.

To achieve an effective load balancing, if Q is the number of processes assigned to each of the P DFT tasks, and CMP2 and CDFT are the scalar costs of each force evaluation at the two levels of theory, each of the contracted MP2 processes should be assigned about PQCMP2/(m(CMP2 + CDFT)) processes and PQCDFT/(m(CMP2 + CDFT)) processes should be given to each contracted DFT task.

46.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
47.
M.
Del Ben
,
J.
Hutter
, and
J.
Vandevondele
,
J. Chem. Theory Comput.
8
,
4177
(
2012
).
48.
M.
Del Ben
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Phys.
143
,
102803
(
2015
).
49.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
50.
E. E.
Dahlke
and
D. G.
Truhlar
,
J. Phys. Chem. B
109
,
15677
(
2005
).
51.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
52.

The development version we used here is provided in the SM.32 More recent versions can be obtained from the authors.

53.
C.
John
,
T.
Spura
,
S.
Habershon
, and
T. D.
Kühne
, e-print arXiv:1512.08206.

Supplementary Material

You do not currently have access to this content.