We present a critical analysis of the popular fragment-orbital density-functional theory (FO-DFT) scheme for the calculation of electronic coupling values. We discuss the characteristics of different possible formulations or “flavors” of the scheme which differ by the number of electrons in the calculation of the fragments and the construction of the Hamiltonian. In addition to two previously described variants based on neutral fragments, we present a third version taking a different route to the approximate diabatic state by explicitly considering charged fragments. In applying these FO-DFT flavors to the two molecular test sets HAB7 (electron transfer) and HAB11 (hole transfer), we find that our new scheme gives improved electronic couplings for HAB7 (−6.2% decrease in mean relative signed error) and greatly improved electronic couplings for HAB11 (−15.3% decrease in mean relative signed error). A systematic investigation of the influence of exact exchange on the electronic coupling values shows that the use of hybrid functionals in FO-DFT calculations improves the electronic couplings, giving values close to or even better than more sophisticated constrained DFT calculations. Comparing the accuracy and computational cost of each variant, we devise simple rules to choose the best possible flavor depending on the task. For accuracy, our new scheme with charged-fragment calculations performs best, while numerically more efficient at reasonable accuracy is the variant with neutral fragments.

1.
C. C.
Moser
,
J. M.
Keske
,
K.
Warncke
,
R. S.
Farid
, and
P. L.
Dutton
,
Nature
355
,
796
(
1992
).
2.
D.
Porath
,
A.
Bezryadin
,
S.
de Vries
, and
C.
Dekker
,
Nature
403
,
635
(
2000
).
3.
A. P.
Gamiz-Hernandez
,
A.
Magomedov
,
G.
Hummer
, and
V. R. I.
Kaila
,
J. Phys. Chem. B
119
,
2611
(
2015
).
4.
D.
Muñoz Ramo
,
A. L.
Shluger
,
J. L.
Gavartin
, and
G.
Bersuker
,
Phys. Rev. Lett.
99
,
155504
(
2007
).
5.
V.
Coropceanu
,
J.
Cornil
,
D. A.
da Silva Filho
,
Y.
Olivier
,
R.
Silbey
, and
J.-L.
Brédas
,
Chem. Rev.
107
,
926
(
2007
).
6.
A.
Painelli
,
F.
Terenziani
, and
Z. G.
Soos
,
Theor. Chem. Acc.
117
,
915
(
2007
).
7.
T. M.
Clarke
and
J. R.
Durrant
,
Chem. Rev.
110
,
6736
(
2010
).
8.
J.-L.
Brédas
,
J. E.
Norton
,
J.
Cornil
, and
V.
Coropceanu
,
Acc. Chem. Res.
42
,
1691
(
2009
).
9.
S. R.
Forrest
,
Nature
428
,
911
(
2004
).
10.
A.
Facchetti
,
Mater. Today
10
,
28
(
2007
).
11.
H.
Dong
,
X.
Fu
,
J.
Liu
,
Z.
Wang
, and
W.
Hu
,
Adv. Mater.
25
,
6158
(
2013
).
12.
M. E.
Gershenson
,
V.
Podzorov
, and
A. F.
Morpurgo
,
Rev. Mod. Phys.
78
,
973
(
2006
).
13.
Q.
Wu
and
T.
Van Voorhis
,
J. Chem. Phys.
125
,
164105
(
2006
).
14.
T.
Van Voorhis
,
T.
Kowalczyk
,
B.
Kaduk
,
L.-P.
Wang
,
C.-L.
Cheng
, and
Q.
Wu
,
Annu. Rev. Phys. Chem.
61
,
149
(
2010
).
15.
J.
Nelson
,
J. J.
Kwiatkowski
,
J.
Kirkpatrick
, and
J. M.
Frost
,
Acc. Chem. Res.
42
,
1768
(
2009
).
16.
H.
Oberhofer
and
J.
Blumberger
,
Phys. Chem. Chem. Phys.
14
,
13846
(
2012
).
17.
A.
Saeki
,
Y.
Koizumi
,
T.
Aida
, and
S.
Seki
,
Acc. Chem. Res.
45
,
1193
(
2012
).
18.
J.
Cornil
,
S.
Verlaak
,
N.
Martinelli
,
A.
Mityashin
,
Y.
Olivier
,
T.
Van Regemorter
,
G.
D’Avino
,
L.
Muccioli
,
C.
Zannoni
,
F.
Castet
,
D.
Beljonne
, and
P.
Heremans
,
Acc. Chem. Res.
46
,
434
(
2013
).
19.
J.
Bardeen
and
W.
Shockley
,
Phys. Rev.
80
,
72
(
1950
).
20.
T.
Musho
and
N.
Wu
,
Phys. Chem. Chem. Phys.
17
,
26160
(
2015
).
21.
R. S.
Sánchez-Carrera
,
S.
Atahan
,
J.
Schrier
, and
A.
Aspuru-Guzik
,
J. Phys. Chem. C
114
,
2334
(
2010
).
22.
A.
Troisi
,
Adv. Mater.
19
,
2000
(
2007
).
23.
K. A.
McGarry
,
W.
Xie
,
C.
Sutton
,
C.
Risko
,
Y.
Wu
,
V. G.
Young
,
J.-L.
Brédas
,
C. D.
Frisbie
, and
C. J.
Douglas
,
Chem. Mater.
25
,
2254
(
2013
).
24.
M.
Mas-Torrent
,
P.
Hadley
,
S. T.
Bromley
,
X.
Ribas
,
J.
Tarrés
,
M.
Mas
,
E.
Molins
,
J.
Veciana
, and
C.
Rovira
,
J. Am. Chem. Soc.
126
,
8546
(
2004
).
25.
E. M.
García-Frutos
,
E.
Gutierrez-Puebla
,
M. A.
Monge
,
R.
Ramírez
,
P. d.
Andrés
,
A. d.
Andrés
,
R.
Ramírez
, and
B.
Gómez-Lor
,
Org. Electron.
10
,
643
(
2009
).
26.
C.
Mitsui
,
T.
Okamoto
,
H.
Matsui
,
M.
Yamagishi
,
T.
Matsushita
,
J.
Soeda
,
K.
Miwa
,
H.
Sato
,
A.
Yamano
,
T.
Uemura
, and
J.
Takeya
,
Chem. Mater.
25
,
3952
(
2013
).
27.
R. J.
Cave
and
M. D.
Newton
,
Chem. Phys. Lett.
249
,
15
(
1996
).
28.
R. J.
Cave
and
M. D.
Newton
,
J. Chem. Phys.
106
,
9213
(
1997
).
29.
P. H.
Dederichs
,
S.
Blügel
,
R.
Zeller
, and
H.
Akai
,
Phys. Rev. Lett.
53
,
2512
(
1984
).
30.
Q.
Wu
and
T.
Van Voorhis
,
Phys. Rev. A
72
,
024502
(
2005
).
31.
H.
Oberhofer
and
J.
Blumberger
,
J. Chem. Phys.
133
,
244105
(
2010
).
32.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
33.
K.
Senthilkumar
,
F. C.
Grozema
,
F. M.
Bickelhaupt
, and
L. D. A.
Siebbeles
,
J. Chem. Phys.
119
,
9809
(
2003
).
34.
T.
Kubař
,
P. B.
Woiczikowski
,
G.
Cuniberti
, and
M.
Elstner
,
J. Phys. Chem. B
112
,
7937
(
2008
).
35.
F. C.
Grozema
and
L. D.
Siebbeles
,
Int. Rev. Phys. Chem.
27
,
87
(
2008
).
36.
J.
Blumberger
and
K. P.
McKenna
,
Phys. Chem. Chem. Phys.
15
,
2184
(
2013
).
37.
S.
Kerisit
,
K. M.
Rosso
,
M.
Dupuis
, and
M.
Valiev
,
J. Phys. Chem. C
111
,
11363
(
2007
).
38.
F.
Gajdos
,
H.
Oberhofer
,
M.
Dupuis
, and
J.
Blumberger
,
J. Phys. Chem. Lett.
4
,
1012
(
2013
);
[PubMed]
F.
Gajdos
,
H.
Oberhofer
,
M.
Dupuis
, and
J.
Blumberger
,
J. Phys. Chem. Lett.
5
,
2765
(
2014
).
[PubMed]
39.
H.
Tamura
,
I.
Hamada
,
H.
Shang
,
K.
Oniwa
,
M.
Akhtaruzzaman
,
T.
Jin
,
N.
Asao
,
Y.
Yamamoto
,
T.
Kanagasekaran
,
H.
Shimotani
,
S.
Ikeda
, and
K.
Tanigaki
,
J. Phys. Chem. C
117
,
8072
(
2013
).
40.
S.-Z.
Weng
,
P.
Shukla
,
M.-Y.
Kuo
,
Y.-C.
Chang
,
H.-S.
Sheu
,
I.
Chao
, and
Y.-T.
Tao
,
ACS Appl. Mater. Interfaces
1
,
2071
(
2009
).
41.
N.
Karl
, “
Synthetic metals
,” in
Proceedings of the Yamada Conference LVI. The Fourth International Symposium on Crystalline Organic Metals, Superconductors and Ferromagnets (ISCOM 2001)
(
Elsevier
,
2003
), Vols.
133–134
, p.
649
.
42.
Y.
Yi
,
L.
Zhu
, and
J.-L.
Brédas
,
J. Phys. Chem. C
116
,
5215
(
2012
).
43.
S.
Shinamura
,
E.
Miyazaki
, and
K.
Takimiya
,
J. Org. Chem.
75
,
1228
(
2010
).
44.
A.
Kubas
,
F.
Hoffmann
,
A.
Heck
,
H.
Oberhofer
,
M.
Elstner
, and
J.
Blumberger
,
J. Chem. Phys.
140
,
104105
(
2014
).
45.
G.
D’Avino
,
S.
Mothy
,
L.
Muccioli
,
C.
Zannoni
,
L.
Wang
,
J.
Cornil
,
D.
Beljonne
, and
F.
Castet
,
J. Phys. Chem. C
117
,
12981
(
2013
).
46.
J.
Kirkpatrick
,
Int. J. Quantum Chem.
108
,
51
(
2008
).
47.
V.
Rühle
,
A.
Lukyanov
,
F.
May
,
M.
Schrader
,
T.
Vehoff
,
J.
Kirkpatrick
,
B.
Baumeier
, and
D.
Andrienko
,
J. Chem. Theory Comput.
7
,
3335
(
2011
).
48.
A.
Kubas
,
F.
Gajdos
,
A.
Heck
,
H.
Oberhofer
,
M.
Elstner
, and
J.
Blumberger
,
Phys. Chem. Chem. Phys.
17
,
14342
(
2015
).
49.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
,
2175
(
2009
).
50.
P.-O.
Löwdin
,
J. Chem. Phys.
18
,
365
(
1950
).
51.
C.
Mitsui
,
J.
Soeda
,
K.
Miwa
,
H.
Tsuji
,
J.
Takeya
, and
E.
Nakamura
,
J. Am. Chem. Soc.
134
,
5448
(
2012
).
52.
I.
Osaka
,
S.
Shinamura
,
T.
Abe
, and
K.
Takimiya
,
J. Mater. Chem. C
1
,
1297
(
2013
).
53.
H.-L.
Wei
and
Y.-F.
Liu
,
Appl. Phys. A
116
,
1711
(
2014
).
54.
CPMD, version 3.17.1, The CPMD consortium, MPI für Festkörperforschung and the IBM Zurich Research Laboratory, 2013, http://www.cpmd.org.
55.
I. Y.
Zhang
,
X.
Ren
,
P.
Rinke
,
V.
Blum
, and
M.
Scheffler
,
New J. Phys.
15
,
123033
(
2013
).
56.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
57.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
58.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
59.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
60.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
61.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
62.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
63.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
124
,
219906
(
2006
).
64.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
224106
(
2006
).
65.
E.
Wigner
,
Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren
(
Vieweg+Teubner Verlag
,
1931
).
66.
C.
Lessig
,
T.
de Witt
, and
E.
Fiume
,
J. Comput. Phys.
231
,
243
(
2012
).
67.
G.
Aubert
,
AIP Adv.
3
,
062121
(
2013
).
68.
M. A.
Blanco
,
M.
Flórez
, and
M.
Bermejo
,
J. Mol. Struct.: THEOCHEM
419
,
19
(
1997
).
69.
See supplementary material at http://dx.doi.org/10.1063/1.4940920 for tables with compiled data.
70.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Science
321
,
792
(
2008
).
71.
D.
Berger
,
A. J.
Logsdail
,
H.
Oberhofer
,
M. R.
Farrow
,
C. R. A.
Catlow
,
P.
Sherwood
,
A. A.
Sokol
,
V.
Blum
, and
K.
Reuter
,
J. Chem. Phys.
141
,
024105
(
2014
); e-print arXiv:1404.2130.
72.
J. C.
Rienstra-Kiracofe
,
G. S.
Tschumper
,
H. F.
Schaefer
,
S.
Nandi
, and
G. B.
Ellison
,
Chem. Rev.
102
,
231
(
2002
).
73.
A. M.
Teale
,
F. D.
Proft
, and
D. J.
Tozer
,
J. Chem. Phys.
129
,
044110
(
2008
).
74.
F.
Jensen
,
J. Chem. Theory Comput.
6
,
2726
(
2010
).
75.
A.
Heck
,
P. B.
Woiczikowski
,
T.
Kuba
,
K.
Welke
,
T.
Niehaus
,
B.
Giese
,
S.
Skourtis
,
M.
Elstner
, and
T. B.
Steinbrecher
,
J. Phys. Chem. B
118
,
4261
(
2014
).

Supplementary Material

You do not currently have access to this content.