Bromine forms a tetragonal clathrate hydrate structure (TS-I) very rarely observed in clathrate hydrates of other guest substances. The detailed structure, energetics, and dynamics of Br2 and Cl2 in TS-I and cubic structure I (CS-I) clathrate hydrates are studied in this work using molecular dynamics and quantum chemical calculations. X-ray diffraction studies show that the halogen-water–oxygen distances in the cages of these structures are shorter than the sum of the van der Waals radii of halogen and oxygen atoms. This suggests that the stabilizing effects of halogen bonding or other non-covalent interactions (NCIs) may contribute to the formation of the unique tetragonal bromine hydrate structure. We performed molecular dynamics simulations of Br2 and Cl2 clathrate hydrates using our previously developed five-site charge models for the dihalogen molecules [Dureckova et al. Can. J. Chem. 93, 864 (2015)] which reproduce the computed electrostatic potentials of the dihalogens and account for the electropositive σ-hole of the halogen bond donor (the dihalogen). Analysis of the radial distribution functions, enthalpies of encapsulation, velocity and orientation autocorrelation functions, and polar angle distributions are carried out for Br2 and Cl2 guests in various cages to contrast the properties of these guests in the TS-I and CS-I phases. Quantum chemical partial geometry optimizations of Br2 and Cl2 guests in the hydrate cages using the M06-2X functional give short halogen-water distances compatible with values observed in X-ray diffraction experiments. NCI plots of guest-cage structures are generated to qualitatively show the relative strength of the non-bonding interactions between dihalogens and water molecules. The differences between behaviors of Br2 and Cl2 guests in the hydrate cages may explain why bromine forms the unique TS-I phase.

1.
E. D.
Sloan
, Jr.
,
Nature
426
,
353
(
2003
).
2.
K. W.
Allen
and
G. A.
Jeffrey
,
J. Chem. Phys.
38
,
2304
(
1963
).
3.
S. L.
Miller
,
S. R.
Gough
, and
D. W.
Davidson
,
J. Phys. Chem.
81
,
2154
(
1977
).
4.
K. A.
Udachin
,
S.
Alavi
, and
J. A.
Ripmeester
,
J. Phys. Chem. C
117
,
14176
(
2013
).
5.
K. A.
Udachin
,
G. D.
Enright
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
,
J. Am. Chem. Soc.
119
,
11481
(
1997
).
6.
A.
Otero-de-la-Roza
,
E. R.
Johnson
, and
G. A.
Dilabio
,
J. Chem. Theory Comput.
10
,
5436
(
2014
).
7.
K. A.
Udachin
and
J. A.
Ripmeester
, in
7th International Conference on Gas Hydrates (ICGH 2011)
,
Edinburgh, Scotland, UK
,
2011
.
8.
G. H.
Cady
,
J. Phys. Chem.
85
,
3225
(
1981
);
G. H.
Cady
,
J. Phys. Chem.
87
,
4437
(
1983
);
G. H.
Cady
,
J. Chem. Educ.
60
,
915
(
1983
).
9.
G. H.
Cady
,
J. Phys. Chem.
89
,
3302
(
1985
).
10.
G.
Kerenskya
,
I. U.
Goldschelger
,
V. A.
Apkarian
,
E.
Fleischer
, and
K. C.
Janda
,
J. Phys. Chem. A
111
,
10969
(
2007
).
11.
R.
Franklin-Mergarejo
,
J.
Rubayo-Soneira
,
N.
Halberstadt
,
T.
Ayed
,
M. I.
Bernal-Uruchurtu
,
R.
Hernández-Lamoneda
, and
K. C.
Janda
,
J. Phys. Chem. A
115
,
5983
(
2011
).
12.
M. I.
Bernal-Uruchurtu
,
K. C.
Janda
, and
R.
Hernández-Lamoneda
,
J. Phys. Chem. A
119
,
452
(
2015
).
13.
F. A.
Batista-Romero
,
P.
Pajón-Suárez
,
M. I.
Bernal-Uruchurtu
, and
R.
Hernández-Lamoneda
,
J. Chem. Phys.
143
,
094305
(
2015
).
14.
I. U.
Goldschleger
,
G.
Kerenskaya
,
K. C.
Janda
, and
V. A.
Apkarian
,
J. Phys. Chem. A
112
,
787
(
2008
).
15.
D. P.
Schofield
and
K. D.
Jordan
,
J. Phys. Chem. A
113
,
7431
(
2009
).
16.
M.
Matsumoto
and
H.
Tanaka
,
J. Phys. Chem. B
115
,
8257
(
2011
).
17.
M.
Matsumoto
and
H.
Tanaka
,
J. Phys. Soc. Jpn.
81
,
SA005
(
2012
).
18.
A. H.
Nguyen
and
V.
Molinero
,
J. Phys. Chem. B
117
,
6330
(
2013
).
19.
H.
Dureckova
,
T. K.
Woo
,
S.
Alavi
, and
J. A.
Ripmeester
,
Can. J. Chem.
93
,
864
(
2015
).
20.
W.
Smith
,
T. R.
Forester
, and
I. T.
Todorov
, The DL_Poly_2 User Manual, version 2.20, STFC Daresbury Laboratory, Daresbury, UK, 2010.
21.
M. I.
Bernal-Uruchurtu
,
R.
Hernández-Lamoneda
, and
K. C.
Janda
,
J. Phys. Chem. A
113
,
5496
(
2009
).
22.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT,
2009
.
23.
S.
Kozuch
and
J. M. L.
Martin
,
J. Chem. Theory Comput.
9
,
1918
(
2013
).
24.
E. D.
Glendening
,
J. K.
Badenhoop
,
A. E.
Reed
,
J. E.
Carpenter
,
J. A.
Bohmann
,
C. M.
Morales
,
C. R.
Landis
, and
F.
Weinhold
, NBO version 6.0. Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013.
25.
E. R.
Johnson
,
S.
Keinan
,
P.
Mori-Sánchez
,
J.
Contreras-García
,
A. J.
Cohen
, and
W.
Yang
,
J. Am. Chem. Soc.
132
,
6498
(
2010
);
[PubMed]
J. J.
Contreras-García
,
E. R.
Johnson
,
S.
Keinan
,
R.
Chaudret
,
J.-P.
Piquemal
,
D. N.
Beratan
, and
W.
Yang
,
J. Chem. Theory Comput.
7
,
625
(
2011
).
[PubMed]
26.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
(
1996
).
27.
D. A.
McQuarrie
,
Statistical Mechanics
(
Harper & Row
,
New York
,
1976
).
28.
S.
Alavi
,
R.
Ohmura
, and
J. A.
Ripmeester
,
J. Chem. Phys.
134
,
054702
(
2011
);
[PubMed]
S.
Alavi
,
R.
Susilo
, and
J. A.
Ripmeester
,
J. Chem. Phys.
130
,
174501
(
2009
).
[PubMed]
29.
See supplementary material at http://dx.doi.org/10.1063/1.4940321 for descriptions of the force fields used in the simulations, figures showing the partially optimized configurations of Cl2and Br2guests in the clathrate hydrate cages from DFT calculations, and the illustrations of the polar angle,θ in different cages.

Supplementary Material

You do not currently have access to this content.