The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential energy distortions encountered in constrained ICMD simulations of peptide molecules.

1.
M.
Fixman
,
Proc. Natl. Acad. Sci. U. S. A.
71
,
3050
(
1974
).
2.
M.
Fixman
,
J. Chem. Phys.
69
,
1538
(
1978
).
3.
N.
and
H. A.
Scheraga
,
J. Chem. Phys.
51
,
4751
(
1969
).
4.
N.
and
H. A.
Scheraga
,
Macromolecules
9
,
535
(
1976
).
5.
W.
Van Gunsteren
and
H.
Berendsen
,
Mol. Phys.
34
,
1311
(
1977
).
6.
W.
Van Gunsteren
,
H.
Berendsen
, and
J.
Rullmann
,
Mol. Phys.
44
,
69
(
1981
).
7.
G.
König
and
B. R.
Brooks
,
Biochim. Biophys. Acta
1850
,
932
(
2015
).
8.
Y. a.
Arnautova
,
R. a.
Abagyan
, and
M.
Totrov
,
Proteins
79
,
477
(
2011
).
9.
J.
Chen
,
W.
Im
, and
C. L.
Brooks
,
J. Comput. Chem.
26
,
1565
(
2005
).
10.
F. A.
Bornemann
and
C.
Schütte
,
A Mathematical Approach to Smoothed Molecular Dynamics: Correcting Potentials for Freezing Bond Angles
(
ZIB
,
1995
).
11.
R. D.
Skeel
and
S.
Reich
,
Eur. Phys. J.: Spec. Top.
200
,
55
(
2011
).
12.
V.
Katritch
,
M.
Totrov
, and
R.
Abagyan
,
J. Comput. Chem.
24
,
254
(
2003
).
13.
W. K.
den Otter
,
J. Chem. Theory Comput.
9
,
3861
(
2013
).
14.
M.
Pear
and
J.
Weiner
,
J. Chem. Phys.
71
,
212
(
1979
).
15.
M.
Pear
and
J.
Weiner
,
J. Chem. Phys.
72
,
3939
(
1980
).
16.
D.
Perchak
,
J.
Skolnick
, and
R.
Yaris
,
Macromolecules
18
,
519
(
1985
).
17.
E.
Helfand
,
J. Chem. Phys.
71
,
5000
(
1979
).
18.
W.
Van Gunsteren
,
Mol. Phys.
40
,
1015
(
1980
).
19.
A.
Jain
,
J. Comput. Phys.
136
,
289
(
1997
).
20.
A.
Jain
,
S.
Kandel
,
J.
Wagner
,
A.
Larsen
, and
N.
Vaidehi
,
J. Chem. Phys.
139
,
244103
(
2013
).
21.
A.
Jain
,
N.
Vaidehi
, and
G.
Rodriguez
,
J. Comput. Phys.
106
,
258
(
1993
).
22.
N.
Vaidehi
,
A.
Jain
, and
W. A.
Goddard
,
J. Phys. Chem.
100
,
10508
(
1996
).
23.
G. S.
Balaraman
,
I.-H.
Park
,
A.
Jain
, and
N.
Vaidehi
,
J. Phys. Chem. B
115
,
7588
(
2011
).
24.
J. R.
Wagner
,
G. S.
Balaraman
,
M. J.
Niesen
,
A. B.
Larsen
,
A.
Jain
, and
N.
Vaidehi
,
J. Comput. Chem.
34
,
904
(
2013
).
25.
A. B.
Larsen
,
J. R.
Wagner
,
S.
Kandel
,
R.
Salomon-Ferrer
,
N.
Vaidehi
, and
A.
Jain
,
J. Comput. Chem.
35
,
2245
(
2014
).
26.
A.
Jain
,
Robot and Multibody Dynamics: Analysis and Algorithms
(
Springer
,
2010
).
27.
R. A.
Bertsch
,
N.
Vaidehi
,
S. I.
Chan
, and
W.
Goddard
,
Proteins
33
,
343
(
1998
).
28.
N.
Vaidehi
and
W. A.
Goddard
,
J. Phys. Chem. A
104
,
2375
(
2000
).
29.
V. K.
Gangupomu
,
J. R.
Wagner
,
I.-H.
Park
,
A.
Jain
, and
N.
Vaidehi
,
Biophys. J.
104
,
1999
(
2013
).
30.
I.-H.
Park
,
V.
Gangupomu
,
J.
Wagner
,
A.
Jain
, and
N.
Vaidehi
,
J. Phys. Chem. B
116
,
2365
(
2012
).
31.
A. B.
Larsen
,
J. R.
Wagner
,
A.
Jain
, and
N.
Vaidehi
,
J. Chem. Inf. Model.
54
,
508
(
2014
).
32.
M.
Pear
and
J.
Weiner
,
J. Chem. Phys.
69
,
785
(
1978
).
33.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
117
,
5179
(
1995
).
34.
P.
Echenique
,
I.
Calvo
, and
J. L.
Alonso
,
J. Comput. Chem.
27
,
1733
(
2006
).
35.
P.
Echenique
,
C. N.
Cavasotto
, and
P.
García-Risueño
,
Eur. Phys. J.: Spec. Top.
200
,
5
(
2011
).
36.
D. S.
Berkholz
,
M. V.
Shapovalov
,
R. L.
Dunbrack
, Jr.
, and
P. A.
Karplus
,
Structure
17
,
1316
(
2009
).
37.
K.
Hinsen
,
S.
Hu
,
G. R.
Kneller
, and
A. J.
Niemi
,
J. Chem. Phys.
139
,
124115
(
2013
).
38.
See supplementary material at http://dx.doi.org/10.1063/1.4939532 for Hellinger distances for the dipeptide simulations and for the per-residue Ramachandran distributions for CLN025.
39.
S.
Honda
,
T.
Akiba
,
Y. S.
Kato
,
Y.
Sawada
,
M.
Sekijima
,
M.
Ishimura
,
A.
Ooishi
,
H.
Watanabe
,
T.
Odahara
, and
K.
Harata
,
J. Am. Chem. Soc.
130
,
15327
(
2008
).

Supplementary Material

You do not currently have access to this content.