We consider a new formulation of the stochastic coupled cluster method in terms of the similarity transformed Hamiltonian. We show that improvement in the granularity with which the wavefunction is represented results in a reduction in the critical population required to correctly sample the wavefunction for a range of systems and excitation levels and hence leads to a substantial reduction in the computational cost. This development has the potential to substantially extend the range of the method, enabling it to be used to treat larger systems with excitation levels not easily accessible with conventional deterministic methods.

1.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
).
2.
J.
Čížek
and
J.
Paldus
,
Int. J. Quantum Chem.
5
,
359
(
1971
).
3.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
4.
A.
Grüneis
,
G. H.
Booth
,
M.
Marsman
,
J.
Spencer
,
A.
Alavi
, and
G.
Kresse
,
J. Chem. Theory Comput.
7
,
2780
(
2011
).
5.
A.
Grüneis
,
J. Chem. Phys.
143
,
102817
(
2015
).
6.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
7.
G. H.
Booth
and
A.
Alavi
,
J. Chem. Phys.
132
,
174104
(
2010
).
8.
G. H.
Booth
,
D.
Cleland
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
135
,
084104
(
2011
).
9.
D.
Cleland
,
G. H.
Booth
,
C.
Overy
, and
A.
Alavi
,
J. Chem. Theory Comput.
8
,
4138
(
2012
).
10.
G. H.
Booth
,
A.
Grüneis
,
G.
Kresse
, and
A.
Alavi
,
Nature
493
,
365
(
2013
).
11.
G. H.
Booth
,
D.
Cleland
,
A.
Alavi
, and
D. P.
Tew
,
J. Chem. Phys.
137
,
164112
(
2012
).
12.
C.
Overy
,
G. H.
Booth
,
N. S.
Blunt
,
J. J.
Shepherd
,
D.
Cleland
, and
A.
Alavi
,
J. Chem. Phys.
141
,
244117
(
2014
).
13.
J. J.
Shepherd
,
G. E.
Scuseria
, and
J. S.
Spencer
,
Phys. Rev. B
90
,
155130
(
2014
).
14.
A. J. W.
Thom
,
Phys. Rev. Lett.
105
,
263004
(
2010
).
15.
J. S.
Spencer
,
N. S.
Blunt
, and
W. M.
Foulkes
,
J. Chem. Phys.
136
,
054110
(
2012
).
16.
J. S.
Spencer
and
A. J. W.
Thom
, “
Developments in stochastic coupled cluster theory: The initiator approximation and application to the uniform electron gas
,”
J. Chem. Phys.
(submitted); e-print arXiv:1511.05752 [physics.chem-ph] (2015).
17.
R. D.
Mattuck
,
Guide to Feynman Diagrams in the Many-Body Problem
(
McGraw-Hill Pub. Co.
,
London, New York
,
1967
).
18.
R. J.
Bartlett
and
G. D.
Purvis
,
Int. J. Quantum Chem.
14
,
561
(
1978
).
19.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
2009
).
20.
R.
Franklin
,
J. S.
Spencer
,
A.
Zoccante
, and
A. J. W.
Thom
, “Data from ‘Linked coupled cluster Monte Carlo,”’ Zenodo, 2015, .
21.
S.
Smart
, “
The use of spin-pure and non-orthogonal Hilbert spaces in full configuration interaction quantum Monte-Carlo
,” Ph.D. thesis,
University of Cambridge
,
2013
.
22.
W. A.
Vigor
,
J. S.
Spencer
,
M. J.
Bearpark
, and
A. J. W.
Thom
, “
Understanding and improving the efficiency of full configuration interaction quantum Monte Carlo
,”
J. Chem. Phys.
(submitted); e-print arXiv:1601.00865 [physics.chem-ph] (2016).
23.
J.
Olsen
,
P.
Jørgensen
,
H.
Koch
,
A.
Balkova
, and
R. J.
Bartlett
,
J. Chem. Phys.
104
,
8007
(
1996
).
24.
J. S.
Spencer
,
N. S.
Blunt
,
W. A.
Vigor
,
F. D.
Malone
,
W. M. C.
Foulkes
,
J. J.
Shepherd
, and
A. J. W.
Thom
, in
2nd Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2)
(
2014
).
25.
J. S.
Spencer
,
N. S.
Blunt
,
W. A.
Vigor
,
F. D.
Malone
,
W. M. C.
Foulkes
,
J. J.
Shepherd
, and
A. J. W.
Thom
,
J. Open Res. Software
3
,
e9
(
2015
).
26.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Ku
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
III
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
, Jr.
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W.
Hanson-Heine
,
P. H.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A. D.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
ONeill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stck
,
Y.-C.
Su
,
A. J.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
III
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
III
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T. V.
Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M.
Gill
, and
M.
Head-Gordon
,
Mol. Phys.
113
,
184
(
2015
).
27.
J.
Spencer
, pyblock, 2014, https://github.com/jsspencer/pyblock.
28.
J.
Hunter
,
Comput. Sci. Eng.
9
,
90
(
2007
).
29.

This was generated for minimal debugging purposes and has geometry rLiH1 = 1 Å, rLiH2 = 1.1 Å, and θHLiH = 90°. In the STO-3G basis, unrestricted orbitals were prepared with a custom density functional with purely exchange, Ex = 2K + XSlater + XBecke88. Two core electrons and 8 virtual spinorbitals were frozen leaving an active space of 2 electrons in 4 spin orbitals. Q-Chem outputs and molecular orbital integrals for this system are included in the data repository.20 

You do not currently have access to this content.