We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum correlations generated between the system and its environment when the Born-Markov approximations no longer hold. Finally, we apply the reaction coordinate formalism to the case of a structured environment comprising of both underdamped (i.e., sharply peaked) and overdamped (broad) components simultaneously. We find that though an enhancement of the dimer energy transfer rate can be obtained when compared to an unstructured environment, its magnitude is rather sensitive to both the dimer-peak resonance conditions and the relative strengths of the underdamped and overdamped contributions.

1.
G.
Engel
,
T.
Calhoun
,
E.
Read
,
T.
Ahn
,
T.
Mančal
,
Y.
Cheng
,
R.
Blankenship
, and
G.
Fleming
,
Nature
446
,
782
(
2007
).
2.
H.
Lee
,
Y.-C.
Cheng
, and
G. R.
Fleming
,
Science
316
,
1462
(
2007
).
3.
E.
Collini
,
C. Y.
Wong
,
K. E.
Wilk
,
P. M. G.
Curmi
,
P.
Brumer
, and
G. D.
Scholes
,
Nature
463
,
644
(
2010
).
4.
G.
Panitchayangkoon
,
D.
Hayes
,
K. A.
Fransted
,
J. R.
Caram
,
E.
Harel
,
J.
Wen
,
R. E.
Blankenship
, and
G. S.
Engel
,
Proc. Natl. Acad. Sci. U. S. A
107
,
12766
(
2010
).
5.
G. R.
Fleming
and
G. D.
Scholes
,
Nature
431
,
256
(
2004
).
6.
A.
Ishizaki
and
G. R.
Fleming
,
Annu. Rev. Condens. Matter Phys.
3
,
333
(
2012
).
7.
N.
Lambert
,
Y.-N.
Chen
,
Y.-C.
Cheng
,
C.-M.
Li
,
G.-Y.
Chen
, and
F.
Nori
,
Nat. Phys.
9
,
10
(
2013
).
8.
M.
Mohseni
,
P.
Rebentrost
,
S.
Lloyd
, and
A.
Aspuru-Guzik
,
J. Chem. Phys.
129
,
174106
(
2008
).
9.
M. B.
Plenio
and
S. F.
Huelga
,
New J. Phys.
10
,
113019
(
2008
).
10.
A.
Ishizaki
and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U. S. A
106
,
17255
(
2009
).
11.
F.
Caruso
,
A. W.
Chin
,
A.
Datta
,
S. F.
Huelga
, and
M. B.
Plenio
,
J. Chem. Phys.
131
,
105106
(
2009
).
12.
A. W.
Chin
,
A.
Datta
,
F.
Caruso
,
S. F.
Huelga
, and
M. B.
Plenio
,
New J. Phys.
12
,
065002
(
2010
).
13.
J.
Wu
,
F.
Liu
,
Y.
Shen
,
J.
Cao
, and
R. J.
Silbey
,
New J. Phys.
12
,
105012
(
2010
).
14.
P.
Rebentrost
,
M.
Mohseni
,
I.
Kassal
,
S.
Lloyd
, and
A.
Aspuru-Guzik
,
New J. Phys.
11
,
033003
(
2009
).
15.
F.
Levi
,
S.
Mostarda
,
F.
Rao
, and
F.
Mintert
,
Rep. Prog. Phys.
78
,
082001
(
2015
).
16.
J.
Strümpfer
and
K.
Schulten
,
J. Chem. Phys.
131
,
225101
(
2009
).
17.
C. K.
Lee
,
J.
Cao
, and
J.
Gong
,
Phys. Rev. E
86
,
021109
(
2012
).
18.
J.
Iles-Smith
,
N.
Lambert
, and
A.
Nazir
,
Phys. Rev. A
90
,
032114
(
2014
).
19.
J.
Cerrillo
and
J.
Cao
,
Phys. Rev. Lett.
112
,
110401
(
2014
).
20.
E. K.
Irish
,
R.
Gómez-Bombarelli
, and
B. W.
Lovett
,
Phys. Rev. A
90
,
012510
(
2014
).
21.
Y.
Fujihashi
,
G. R.
Fleming
, and
A.
Ishizaki
,
J. Chem. Phys.
142
,
212403
(
2015
).
22.
E. K.
Levi
,
E. K.
Irish
, and
B. W.
Lovett
, e-print arXiv:1510.00608.
23.
A.
Kolli
,
E. J.
O’Reilly
,
G. D.
Scholes
, and
A.
Olaya-Castro
,
J. Chem. Phys.
137
,
174109
(
2012
).
24.
N.
Christensson
,
H. F.
Kauffmann
,
T.
Pullerits
, and
T.
Mančal
,
J. Phys. Chem. B
116
,
7449
(
2012
).
25.
A. W.
Chin
,
J.
Prior
,
R.
Rosenbach
,
F.
Caycedo-Soler
,
S. F.
Huelga
, and
M. B.
Plenio
,
Nat. Phys.
9
,
113
(
2013
).
26.
M. B.
Plenio
,
J.
Almeida
, and
S. F.
Huelga
,
J. Chem. Phys.
139
,
235102
(
2013
).
27.
D. B.
Turner
,
R.
Dinshaw
,
K.-K.
Lee
,
M. S.
Belsley
,
K. E.
Wilk
,
P. M. G.
Curmic
, and
G. D.
Scholes
,
Phys. Chem. Chem. Phys.
14
,
4857
(
2012
).
28.
G. H.
Richards
,
K. E.
Wilk
,
P. M. G.
Curmi
,
H. M.
Quiney
, and
J. A.
Davis
,
J. Phys. Chem. Lett.
3
,
272
(
2012
).
29.
V.
Tiwari
,
W. K.
Peters
, and
D. M.
Jonas
,
Proc. Natl. Acad. Sci. U. S. A
110
,
1203
(
2013
).
30.
A.
Chenu
,
N.
Christensson
,
H. F.
Kauffmann
, and
T.
Mančal
,
Sci. Rep.
3
,
2029
(
2013
).
31.
G. H.
Richards
,
K. E.
Wilk
,
P. M. G.
Curmi
, and
J. A.
Davis
,
J. Phys. Chem. Lett.
5
,
43
(
2014
).
32.
E.
Romero
,
R.
Augulis
,
V. I.
Novoderezhkin
,
M.
Ferretti
,
J.
Thieme
,
D.
Zigmantas
, and
R.
van Grondelle
,
Nat. Phys.
10
,
676
(
2014
).
33.
F. D.
Fuller
,
J.
Pan
,
A.
Gelzinis
,
V.
Butkus
,
S. S.
Senlik
,
D. E.
Wilcox
,
C. F.
Yocum
,
L.
Valkunas
,
D.
Abramavicius
, and
J. P.
Ogilvie
,
Nat. Chem.
6
,
706
(
2014
).
34.
I. S.
Ryu
,
H.
Dong
, and
G. R.
Fleming
,
J. Phys. Chem. B
118
,
1381
(
2014
).
35.
F.
Novelli
,
A.
Nazir
,
G. H.
Richards
,
A.
Roozbeh
,
K. E.
Wilk
,
P. M. G.
Curmi
, and
J. A.
Davis
,
J. Phys. Chem. Lett.
6
,
4573
(
2015
).
36.
J.
Prior
,
A. W.
Chin
,
S. F.
Huelga
, and
M. B.
Plenio
,
Phys. Rev. Lett.
105
,
050404
(
2010
).
37.
J. M.
Womick
and
A. M.
Moran
,
J. Phys. Chem. B
115
,
1347
(
2011
).
38.
J. M.
Womick
,
B. A.
West
,
N. F.
Scherer
, and
A. M.
Moran
,
J. Phys. B
45
,
154016
(
2012
).
39.
J. M.
Womick
and
A. M.
Moran
,
J. Phys. Chem. B
113
,
15747
(
2009
).
40.
E. J.
O’Reilly
and
A.
Olaya-Castro
,
Nat. Commun.
5
,
3012
(
2014
).
41.
42.
Y.
Tanimura
,
J. Chem. Phys.
137
,
22A550
(
2012
).
43.
M.
Tanaka
and
Y.
Tanimura
,
J. Chem. Phys.
132
,
214502
(
2010
).
44.
M.
Tanaka
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
78
,
073802
(
2009
).
45.
A. G.
Dijkstra
,
C.
Wang
,
J.
Cao
, and
G. R.
Fleming
,
J. Phys. Chem. Lett.
6
,
627
(
2015
).
46.
H.
Liu
,
L.
Zhu
,
S.
Bai
, and
Q.
Shi
,
J. Chem. Phys.
140
,
134106
(
2014
).
47.
F. A.
Schröder
,
A. W.
Chin
, and
R. H.
Friend
, e-print arXiv:1507.02202.
48.
R.
Rosenbach
,
J.
Cerrillo
,
S. F.
Huelga
,
J.
Cao
, and
M. B.
Plenio
, e-print arXiv:1510.03100.
49.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4600
(
1995
).
50.
51.
M.
Thorwart
,
J.
Eckel
,
J.
Reina
,
P.
Nalbach
, and
S.
Weiss
,
Chem. Phys. Lett.
478
,
234
(
2009
).
52.
P.
Nalbach
and
M.
Thorwart
,
J. Chem. Phys.
132
,
194111
(
2010
).
53.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234110
(
2009
).
54.
H. P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
Oxford
,
2002
).
56.
D. P. S.
McCutcheon
and
A.
Nazir
,
Phys. Rev. B
83
,
165101
(
2011
).
57.
D. P. S.
McCutcheon
and
A.
Nazir
,
J. Chem. Phys.
135
,
114501
(
2011
).
58.
F. A.
Pollock
,
D. P. S.
McCutcheon
,
B. W.
Lovett
,
E. M.
Gauger
, and
A.
Nazir
,
New J. Phys.
15
,
075018
(
2013
).
59.
A.
Kolli
,
A.
Nazir
, and
A.
Olaya-Castro
,
J. Chem. Phys.
135
,
154112
(
2011
).
60.
S.
Jang
,
Y.-C.
Cheng
,
D. R.
Reichman
, and
J. D.
Eaves
,
J. Chem. Phys.
129
,
101104
(
2008
).
61.
S.
Jang
,
J. Chem. Phys.
131
,
164101
(
2009
).
62.
S.
Jang
,
J. Chem. Phys.
135
,
034105
(
2011
).
63.
E. N.
Zimanyi
and
R. J.
Silbey
,
Philos. Trans. R. Soc., A
370
,
3620
(
2012
).
64.
D. P. S.
McCutcheon
,
N. S.
Dattani
,
E. M.
Gauger
,
B. W.
Lovett
, and
A.
Nazir
,
Phys. Rev. B
84
,
081305
(
2011
).
65.
C. K.
Lee
,
J.
Moix
, and
J.
Cao
,
J. Chem. Phys.
136
,
204120
(
2012
).
66.
H.-T.
Chang
,
P.-P.
Zhang
, and
Y.-C.
Cheng
,
J. Chem. Phys.
139
,
224112
(
2013
).
67.
M. P.
Woods
,
R.
Groux
,
A. W.
Chin
,
S. F.
Huelga
, and
M. B.
Plenio
,
J. Math. Phys.
55
,
032101
(
2014
).
69.
A.
Garg
,
J. N.
Onuchic
, and
V.
Ambegaokar
,
J. Chem. Phys.
83
,
4491
(
1985
).
70.
M.
Thoss
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
115
,
2991
(
2001
).
71.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
106
,
1769
(
1997
).
72.
K. H.
Hughes
,
C. D.
Christ
, and
I.
Burghardt
,
J. Chem. Phys.
131
,
124108
(
2009
).
73.
L.
Hartmann
,
I.
Goychuk
, and
P.
Hänggi
,
J. Chem. Phys.
113
,
11159
(
2000
).
74.
R.
Martinazzo
,
B.
Vacchini
,
K. H.
Hughes
, and
I.
Burghardt
,
J. Chem. Phys.
134
,
011101
(
2011
).
75.
M. P.
Woods
,
M.
Cramer
, and
M. B.
Plenio
,
Phys. Rev. Lett.
115
,
130401
(
2015
).
76.
I.
Prigogine
and
S. A.
Rice
, “
The redfield equation in condensed-phase quantum dynamics
,”
Advances in Chemical Physics
(
John Wiley & Sons, Inc.
,
2007
), pp.
77
134
.
77.
Q.
Shi
,
L.
Chen
,
G.
Nan
,
R.
Xu
, and
Y.
Yan
,
J. Chem. Phys.
130
,
164518
(
2009
).
78.
A. J.
Leggett
,
Phys. Rev. B
30
,
1208
(
1984
).
79.
A.
Caldeira
and
A.
Leggett
,
Physica A
121
,
587
(
1983
).
80.
H.
Risken
,
The Fokker-Planck Equation
,
Springer Series in Synergetics
Vol.
18
(
Springer
,
Berlin, Heidelberg
,
1984
), pp.
63
95
.
81.
J.
Johansson
,
P.
Nation
, and
F.
Nori
,
Comput. Phys. Commun.
183
,
1760
(
2012
).
82.
J.
Johansson
,
P.
Nation
, and
F.
Nori
,
Comput. Phys. Commun.
184
,
1234
(
2013
).
83.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
84.
D. A.
Steck
, Quantum and Atom Optics, 2015, available online at http://steck.us/teaching.
85.
N.
Killoran
,
S. F.
Huelga
, and
M. B.
Plenio
,
J. Chem. Phys.
143
,
155102
(
2015
).
86.
W. T.
Coffey
,
Y. P.
Kalmykov
,
S. V.
Titov
, and
B. P.
Mulligan
,
Phys. Chem. Chem. Phys.
9
,
3361
(
2007
).
You do not currently have access to this content.