In this report, we show that the ability to measure the sub-1 cm−1 resolution phase-resolved and intensity high-resolution broadband sum frequency generation vibrational spectra of the –CN stretch vibration of the Langmuir-Blodgett (LB) monolayer of the 4-n-octyl-4′-cyanobiphenyl (8CB) on the z-cut α-quartz surface allows the direct comparison and understanding of the homogeneous and inhomogeneous broadenings in the imaginary and intensity SFG vibrational spectral line shapes in detail. The difference of the full width at half maximum (FWHM) of the imaginary and intensity sum-frequency generation vibrational spectroscopy spectra of the same vibrational mode is the signature of the Voigt line shape and it measures the relative contribution to the overall line shape from the homogeneous and inhomogeneous broadenings in SFG vibrational spectra. From the phase-resolved and intensity spectra, we found that the FWHM of the 2238.00 ± 0.02 cm−1 peak in the phase-resolved imaginary and intensity spectra is 19.2 ± 0.2 cm−1 and 21.6 ± 0.4 cm−1, respectively, for the –CN group of the 8CB LB monolayer on the z-cut α-quartz crystal surface. The FWHM width difference of 2.4 cm−1 agrees quantitatively with a Voigt line shape with a homogeneous broadening half width of Γ = 5.29 ± 0.08 cm−1 and an inhomogeneous standard derivation width Δω = 5.42 ± 0.07 cm−1. These results shed new lights on the understanding and interpretation of the line shapes of both the phase-resolved and the intensity SFG vibrational spectra, as well as other incoherent and coherent spectroscopic techniques in general.

1.
Y. R.
Shen
, “
Surface spectroscopy by nonlinear optics
,” in
Frontiers in Laser Spectroscopy
, edited by
T. W.
Hansch
and
M.
Inguscio
(
International School of Physics–Enrico Fermi, Verenna
,
Italy
,
1994
).
2.
K. B.
Eisenthal
,
Annu. Rev. Phys. Chem.
43
,
627
(
1992
).
3.
K. B.
Eisenthal
,
Chem. Rev.
96
,
1343
(
1996
).
4.
P. B.
Miranda
and
Y. R.
Shen
,
J. Phys. Chem. B
103
,
3292
(
1999
).
5.
G. A.
Somorjai
and
G.
Rupprechter
,
J. Phys. Chem. B
103
,
1623
(
1999
).
6.
M.
Buck
and
M.
Himmelhaus
,
J. Vac. Sci. Technol., A
19
,
2717
(
2001
).
7.
G. L.
Richmond
,
Annu. Rev. Phys. Chem.
52
,
357
(
2001
).
8.
Z.
Chen
,
Y. R.
Shen
, and
G. A.
Somorjai
,
Annu. Rev. Phys. Chem.
53
,
437
(
2002
).
9.
H.
Arnolds
and
M.
Bonn
,
Surf. Sci. Rep.
65
,
45
(
2010
).
10.
E. C. Y.
Yan
,
L.
Fu
,
Z.
Wang
, and
W.
Liu
,
Chem. Rev.
114
,
8471
(
2014
).
11.
S.
Roy
,
P. A.
Covert
,
W. R.
Fitzgerald
, and
D. K.
Hore
,
Chem. Rev.
114
,
8388
(
2014
).
12.
C. M.
Johnson
and
S.
Baldelli
,
Chem. Rev.
114
,
8416
(
2014
).
13.
C. S.
Tian
and
Y. R.
Shen
,
Surf. Sci. Rep.
69
,
105
(
2014
).
14.
C. D.
Bain
,
P. B.
Davies
,
T. H.
Ong
,
R. N.
Ward
, and
M. A.
Brown
,
Langmuir
7
,
1563
(
1991
).
15.
X.
Zhuang
,
P. B.
Miranda
,
D.
Kim
, and
Y. R.
Shen
,
Phys. Rev. B
59
,
12632
(
1999
).
16.
H. F.
Wang
,
W.
Gan
,
R.
Lu
,
Y.
Rao
, and
B. H.
Wu
,
Int. Rev. Phys. Chem.
24
,
191
(
2005
).
17.
D. S.
Zheng
,
Y.
Wang
,
A. A.
Liu
, and
H. F.
Wang
,
Int. Rev. Phys. Chem.
27
,
629
(
2008
).
18.
N.
Ji
,
V.
Ostroverkhov
,
C. Y.
Chen
, and
Y. R.
Shen
,
J. Am. Chem. Soc.
129
,
10056
(
2007
).
19.
H. F.
Wang
,
L.
Velarde
,
W.
Gan
, and
L.
Fu
,
Annu. Rev. Phys. Chem.
66
,
189
(
2015
).
20.
J. E.
Laaser
,
W.
Xiong
, and
M. T.
Zanni
,
J. Phys. Chem. B
115
,
2536
(
2011
).
21.
J. E.
Laaser
and
M. T.
Zanni
,
J. Phys. Chem. A
117
,
5875
(
2013
).
22.
A.
Ghosh
,
J.-J.
Ho
,
A. L.
Serrano
,
D. R.
Skoff
,
T.
Zhang
, and
M. T.
Zanni
,
Faraday Discuss.
177
,
493
(
2015
).
23.
L.
Fu
,
S.-L.
Chen
, and
H.-F.
Wang
, “
Validation of spectra and phase in sub-1 cm−1 resolution sum-frequency generation vibrational spectroscopy through internal heterodyne phase-resolved measurement
,”
J. Phys. Chem. B
(published online).
24.
L.
Velarde
and
H.-F.
Wang
,
Phys. Chem. Chem. Phys.
15
,
19970
(
2013
).
25.
L.
Velarde
and
H.-F.
Wang
,
J. Chem. Phys.
139
,
084204
(
2013
).
26.
Y. R.
Shen
,
Annu. Rev. Phys. Chem.
64
,
129
(
2013
).
27.
Y. R.
Shen
,
Fundamentals of Sum-Frequency Spectroscopy
(
Cambridge University Press
,
2016
).
28.
R.
Superfine
,
J. Y.
Huang
, and
Y. R.
Shen
,
Opt. Lett.
15
,
1276
(
1990
).
29.
P. K.
Yang
and
J. Y.
Huang
,
J. Opt. Soc. Am. B
14
,
2443
(
1997
).
30.
V.
Ostroverkhov
,
G. A.
Waychunas
, and
Y. R.
Shen
,
Phys. Rev. Lett.
94
,
046102
(
2005
).
31.
N.
Ji
,
V.
Ostroverkhov
,
C. S.
Tian
, and
Y. R.
Shen
,
Phys. Rev. Lett.
100
,
096102
(
2008
).
32.
M.
Sovago
,
E.
Vartiainen
, and
M.
Bonn
,
J. Phys. Chem. C
113
,
6100
(
2009
).
33.
C. S.
Tian
and
Y. R.
Shen
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
15148
(
2009
).
34.
C. S.
Tian
and
Y. R.
Shen
,
J. Am. Chem. Soc.
131
,
2790
(
2009
).
35.
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Chem. Phys.
130
,
204704
(
2009
).
36.
J. A.
Mondal
,
S.
Nihonyanagi
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Am. Chem. Soc.
132
,
10656
(
2010
).
37.
X. K.
Chen
and
H. C.
Allen
,
J. Phys. Chem. B
114
,
14983
(
2010
).
38.
H.
Watanabe
,
S.
Yamaguchi
,
S.
Sen
,
A.
Morita
, and
T.
Tahara
,
J. Chem. Phys.
132
,
144701
(
2010
).
39.
W.
Hua
,
X. K.
Chen
, and
H. C.
Allen
,
J. Phys. Chem. A
115
,
6233
(
2011
).
40.
K. C.
Jena
,
P. A.
Covert
, and
D. K.
Hore
,
J. Chem. Phys.
134
,
044712
(
2011
).
41.
P. A.
Covert
,
W. R.
Fitzgerald
, and
D. K.
Hore
,
J. Chem. Phys.
137
,
014201
(
2012
).
42.
A. G. F. de
Beer
,
J. S.
Samson
,
W.
Hua
,
Z. S.
Huang
,
X. K.
Chen
,
H. C.
Allen
, and
S.
Roke
,
J. Chem. Phys.
135
,
224701
(
2011
).
43.
R. R.
Feng
,
Y.
Guo
,
R.
Lu
,
L.
Velarde
, and
H. F.
Wang
,
J. Phys. Chem. A
115
,
6015
(
2011
).
44.
R. E.
Pool
,
J.
Versluis
,
E. H. G.
Backus
, and
M.
Bonn
,
J. Phys. Chem. B
115
,
15362
(
2011
).
45.
L.
Velarde
and
H.-F.
Wang
,
Chem. Phys. Lett.
585
,
42
(
2013
).
46.
M.
Okuno
and
T.-A.
Ishibashi
,
J. Phys. Chem. Lett.
5
,
2874
(
2014
).
47.
S.
Nihonyanagi
,
R.
Kusaka
,
K.-I.
Inoue
,
A.
Adhikari
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Chem. Phys.
143
,
124707
(
2015
).
48.
S.
Yamaguchi
,
J. Chem. Phys.
143
,
034202
(
2015
).
49.
B.
Xu
,
Y.
Wu
,
D.
Sun
,
H.-L.
Dai
, and
Y.
Rao
,
Opt. Lett.
40
,
4472
(
2015
).
50.
M.
Okuno
and
T.-A.
Ishibashi
,
J. Phys. Chem. C
119
,
9947
(
2015
).
51.
A.
Morita
and
J. T.
Hynes
,
Chem. Phys.
258
,
371
(
2000
).
52.
A.
Morita
and
J. T.
Hynes
,
J. Phys. Chem. B
106
,
673
(
2002
).
53.
A.
Morita
,
J. Phys. Chem. B
110
,
3158
(
2006
).
54.
M.
Sovago
,
R. K.
Campen
,
G. W. H.
Wurpel
,
M.
Muller
,
H. J.
Bakker
, and
M.
Bonn
,
Phys. Rev. Lett.
100
,
173901
(
2008
).
55.
M.
Smits
,
A.
Ghosh
,
M.
Sterrer
,
M.
Muller
, and
M.
Bonn
,
Phys. Rev. Lett.
98
,
098302
(
2007
).
56.
A.
Morita
and
T.
Ishiyama
,
Phys. Chem. Chem. Phys.
10
,
5801
(
2008
).
57.
T.
Ishiyama
and
A.
Morita
,
J. Phys. Chem. C
113
,
16299
(
2009
).
58.
B. M.
Auer
and
J. L.
Skinner
,
J. Phys. Chem. B
113
,
4125
(
2009
).
59.
B. M.
Auer
and
J. L.
Skinner
,
Chem. Phys. Lett.
470
,
13
(
2009
).
60.
P. A.
Pieniazek
,
C. J.
Tainter
, and
J. L.
Skinner
,
J. Am. Chem. Soc.
133
,
10360
(
2011
).
61.
I. V.
Stiopkin
,
C.
Weeraman
,
P. A.
Pieniazek
,
F. Y.
Shalhout
,
J. L.
Skinner
, and
A. V.
Benderskii
,
Nature
474
,
192
(
2011
).
62.
S.
Nihonyanagi
,
T.
Ishiyama
,
T.
Lee
,
S.
Yamaguchi
,
M.
Bonn
,
A.
Morita
, and
T.
Tahara
,
J. Am. Chem. Soc.
133
,
16875
(
2011
).
63.
K.
Shiratori
and
A.
Morita
,
J. Chem. Phys.
134
,
234705
(
2011
).
64.
T.
Ishiyama
,
H.
Takahashi
, and
A.
Morita
,
J. Phys.: Condens. Matter
24
,
124107
(
2012
).
65.
T.
Ishiyama
,
T.
Imamura
, and
A.
Morita
,
Chem. Rev.
114
,
8447
(
2014
).
66.
L.
Velarde
,
X. Y.
Zhang
,
Z.
Lu
,
A. G.
Joly
,
Z. M.
Wang
, and
H. F.
Wang
,
J. Chem. Phys.
135
,
241102
(
2011
).
67.
R.
Kubo
,
Adv. Chem. Phys.
15
,
101
(
1969
).
68.
J.
Higinbotham
and
I.
Marshall
, “
NMR lineshapes and lineshape fitting procedures
,” in
Annual Reports on NMR Spectroscopy
(
Academic Press
,
2001
), p.
59
.
69.
P.
Hamm
and
M.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
2011
).
70.
E.
Bartholdi
and
R. R.
Ernst
,
J. Magn. Reson.
11
,
9
(
1973
).
71.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
1995
).
72.
A. L.
Mifflin
,
L.
Velarde
,
J. M.
Ho
,
B. T.
Psciuk
,
C. F. A.
Negre
,
C. J.
Ebben
,
M. A.
Upshur
,
Z.
Lu
,
B. L.
Strick
,
R. J.
Thomson
,
V. S.
Batista
,
H. F.
Wang
, and
F. M.
Geiger
,
J. Phys. Chem. A
119
,
1292
(
2015
).
73.
A. G.
Marshall
and
F. R.
Verdun
,
Fourier Transforms in NMR, Optical, and Mass Spectrometry: A User’s Handbook
(
Elsevier Science
,
1990
).
74.
A.
Tokmakoff
,
J. Phys. Chem. A
104
,
4247
(
2000
).
75.
P.
Guyotsionnest
,
Phys. Rev. Lett.
66
,
1489
(
1991
).
76.
J. C.
Owrutsky
,
J. P.
Culver
,
M.
Li
,
Y. R.
Kim
,
M. J.
Sarisky
,
M. S.
Yeganeh
,
A. G.
Yodh
, and
R. M.
Hochstrasser
,
J. Chem. Phys.
97
,
4421
(
1992
).
77.
D.
Star
,
T.
Kikteva
, and
G. W.
Leach
,
J. Chem. Phys.
111
,
14
(
1999
).
78.
S.
Roke
,
A. W.
Kleyn
, and
M.
Bonn
,
Chem. Phys. Lett.
370
,
227
(
2003
).
79.
J. P. R.
Symonds
,
H.
Arnolds
,
V. L.
Zhang
,
K.
Fukutani
, and
D. A.
King
,
J. Chem. Phys.
120
,
7158
(
2004
).
80.
A. N.
Bordenyuk
and
A. V.
Benderskii
,
J. Chem. Phys.
122
,
134713
(
2005
).
81.
A. N.
Bordenyuk
,
H.
Jayathilake
, and
A. V.
Benderskii
,
J. Phys. Chem. B
109
,
15941
(
2005
).
82.
A.
Lagutchev
,
S. A.
Hambir
, and
D. D.
Dlott
,
J. Phys. Chem. C
111
,
13645
(
2007
).
83.
I. M.
Lane
,
D. A.
King
, and
H.
Arnolds
,
J. Chem. Phys.
126
,
024707
(
2007
).
84.
S.
Nihonyanagi
,
A.
Eftekhari-Bafrooei
, and
E.
Borguet
,
J. Chem. Phys.
134
,
084701
(
2011
).
85.
J. J.
Olivero
and
R. L.
Longbothum
,
J. Quant. Spectrosc. Radiat. Transfer
17
,
233
(
1977
).
86.
Y.
Liu
,
J.
Lin
,
G.
Huang
,
Y.
Guo
, and
C.
Duan
,
J. Opt. Soc. Am. B
18
,
666
(
2001
).
87.
A. G.
Marshall
and
D. C.
Roe
,
Anal. Chem.
50
,
756
(
1978
).
88.
D. C.
Roe
,
A. G.
Marshall
, and
S. H.
Smallcombe
,
Anal. Chem.
50
,
764
(
1978
).
89.
R. E.
Bruce
and
A. G.
Marshall
,
J. Phys. Chem.
84
,
1372
(
1980
).
90.
E. C.
Craig
and
A. G.
Marshall
,
J. Magn. Reson.
76
,
458
(
1988
).
91.
A. G.
Marshall
,
Chemometrics and Intelligent Laboratory Systems
3
,
261
(
1988
).
92.
C. S.
Tian
and
Y. R.
Shen
,
Chem. Phys. Lett.
470
,
1
(
2009
).
93.
S. J.
Byrnes
,
P. L.
Geissler
, and
Y. R.
Shen
,
Chem. Phys. Lett.
516
,
115
(
2011
).
94.
X.
Wei
,
S. C.
Hong
,
X. W.
Zhuang
,
T.
Goto
, and
Y. R.
Shen
,
Phys. Rev. E
62
,
5160
(
2000
).
95.
W. T.
Liu
and
Y. R.
Shen
,
Phys. Rev. Lett.
101
,
016101
(
2008
).
96.
W.-T.
Liu
and
Y. R.
Shen
,
Phys. Rev. B
78
,
024302
(
2008
).
97.
D. K.
Hore
,
M. Y.
Hamamoto
, and
G. L.
Richmond
,
J. Chem. Phys.
121
,
12589
(
2004
).
98.
J. Y.
Huang
and
Y. R.
Shen
,
Phys. Rev. A
49
,
3973
(
1994
).
99.
Y. R.
Shen
,
Phys. Rev. A
45
,
446
(
1992
).
100.
L.
Velarde
,
Z.
Lu
, and
H.-F.
Wang
,
Chin. J. Chem. Phys.
26
,
710
(
2013
).
101.
J.
Ma
,
I. M.
Pazos
,
W.
Zhang
,
R. M.
Culik
, and
F.
Gai
,
Annu. Rev. Phys. Chem.
66
,
357
(
2015
).
You do not currently have access to this content.