The combined density functional theory and multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke [J. Chem. Phys. 111, 5645 (1999)] is a well-established semi-empirical quantum chemical method for efficiently computing excited-state properties of organic molecules. As it turns out, the method fails to treat bi-chromophores owing to the strong dependence of the parameters on the excitation class. In this work, we present an alternative form of correcting the matrix elements of a MRCI Hamiltonian which is built from a Kohn-Sham set of orbitals. It is based on the idea of constructing individual energy shifts for each of the state functions of a configuration. The new parameterization is spin-invariant and incorporates less empirism compared to the original formulation. By utilizing damping techniques together with an algorithm of selecting important configurations for treating static electron correlation, the high computational efficiency has been preserved. The robustness of the original and redesigned Hamiltonians has been tested on experimentally known vertical excitation energies of organic molecules yielding similar statistics for the two parameterizations. Besides that, our new formulation is free from artificially low-lying doubly excited states, producing qualitatively correct and consistent results for excimers. The way of modifying matrix elements of the MRCI Hamiltonian presented here shall be considered as default choice when investigating photophysical processes of bi-chromophoric systems such as singlet fission or triplet-triplet upconversion.

1.
K.
Andersson
,
P. Å.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
(
1990
).
2.
K.
Andersson
,
P. Å.
Malmqvist
, and
B. O.
Roos
,
J. Chem. Phys.
96
,
1218
(
1992
).
3.
M.
Schreiber
,
M. R.
Silva-Junior
,
S. P. A.
Sauer
, and
W.
Thiel
,
J. Chem. Phys.
128
,
134110
(
2008
).
4.
P. Å.
Malmqvist
,
A.
Rendell
, and
B. O.
Roos
,
J. Phys. Chem.
94
,
5477
(
1990
).
5.
S.
Grimme
,
Chem. Phys. Lett.
259
,
128
(
1996
).
6.
S.
Grimme
and
M.
Waletzke
,
J. Chem. Phys.
111
,
5645
(
1999
).
7.
M.
Roemelt
,
D.
Maganas
,
S.
DeBeer
, and
F.
Neese
,
J. Chem. Phys.
138
,
204101
(
2013
).
8.
E. V.
Beck
,
E. A.
Stahlberg
,
L. W.
Burggraf
, and
J.-P.
Blaudeau
,
Chem. Phys.
349
,
158
(
2008
).
9.
M. R.
Silva-Junior
,
M.
Schreiber
,
S. P. A.
Sauer
, and
W.
Thiel
,
J. Chem. Phys.
129
,
104103
(
2008
).
10.
C. M.
Marian
and
N.
Gilka
,
J. Chem. Theory Comput.
4
,
1501
(
2008
).
11.
M.
Kleinschmidt
,
C. M.
Marian
,
M.
Waletzke
, and
S.
Grimme
,
J. Chem. Phys.
130
,
044708
(
2009
).
12.
J.-M.
Mewes
,
V.
Jovanović
,
C. M.
Marian
, and
A.
Dreuw
,
Phys. Chem. Chem. Phys.
16
,
12393
(
2014
).
13.
R. W.
Wetmore
and
G. A.
Segal
,
Chem. Phys. Lett.
36
,
478
(
1975
).
14.
G. A.
Segal
,
R. W.
Wetmore
, and
K.
Wolf
,
Chem. Phys.
30
,
269
(
1978
).
15.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
16.
See supplementary material at http://dx.doi.org/10.1063/1.4940036 for geometry parameters, chemical structures, and experimental data of all molecules used in the fitting and assessment as well as additional information on MRCI matrix element formulas.
17.
TURBOMOLE V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007, available from http://www.turbomole.com.
18.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
19.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
20.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
21.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
22.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
23.
O.
Vahtras
,
J.
Almlöf
, and
M.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
24.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
25.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
WIREs: Comput. Mol. Sci.
2
,
242
(
2012
).
26.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
27.
H.-J.
Werner
,
Mol. Phys.
89
,
645
(
1996
).
28.
G.
Ghigo
,
B. O.
Roos
, and
P.-Å.
Malmqvist
,
Chem. Phys. Lett.
396
,
142
(
2004
).
29.
B. O.
Roos
and
K.
Andersson
,
Chem. Phys. Lett.
245
,
215
(
1995
).
30.
J. A.
Nelder
and
R.
Mead
,
Comput. J.
7
,
308
(
1965
).
31.
A.
Kuppermann
,
W. M.
Flicker
, and
O. A.
Mosher
,
Chem. Rev.
79
,
77
(
1979
).
32.
Y.
Okuzawa
,
M.
Fujii
, and
M.
Ito
,
Chem. Phys. Lett.
171
,
341
(
1990
).
33.
A.
Bolovinos
,
P.
Tsekeris
,
J.
Philis
,
E.
Pantos
, and
G.
Andritsopoulos
,
J. Mol. Spectrosc.
103
,
240
(
1984
).
34.
W. M.
St. John
,
R. C.
Estler
, and
J. P.
Doering
,
J. Chem. Phys.
61
,
763
(
1974
).
35.
E. B.
Nielsen
and
J. A.
Schellman
,
J. Phys. Chem.
71
,
2297
(
1967
).
36.
S.
Nagakura
,
M.
Kojima
, and
Y.
Maruyama
,
J. Mol. Spectrosc.
13
,
174
(
1964
).
37.
S. C. J.
Meskers
,
T.
Polonski
, and
H. P. J. M.
Dekkers
,
J. Phys. Chem.
99
,
1134
(
1995
).
38.
M.
Parac
and
S.
Grimme
,
Chem. Phys.
292
,
11
(
2003
).
39.
T.
Polívka
and
V.
Sundström
,
Chem. Rev.
104
,
2021
(
2004
).
40.
G. D.
Scholes
,
K. P.
Ghiggino
,
A. M.
Oliver
, and
M. N.
Paddon-Row
,
J. Am. Chem. Soc.
115
,
4345
(
1993
).
41.
S.
Tretiak
,
W. M.
Zhang
,
V.
Chernyak
, and
S.
Mukamel
,
Proc. Natl. Acad. Sci. U. S. A.
96
,
13003
(
1999
).
42.
K. R.
Asmis
, “
Electron-molecule collisions: A novel instrument for measuring inelastic differential cross sections at 180° angle and applications
,” Ph.D. thesis,
University of Freiburg
, Switzerland,
1996
.
43.
J. P.
Doering
,
J. Chem. Phys.
70
,
3902
(
1979
).
44.
O. A.
Mosher
,
W. M.
Flicker
, and
A.
Kuppermann
,
J. Chem. Phys.
59
,
6502
(
1973
).
45.
M. A.
Watson
and
G. K.-L.
Chan
,
J. Chem. Theory Comput.
8
,
4013
(
2012
).
46.
A.
Komainda
,
B.
Ostojić
, and
H.
Köppel
,
J. Phys. Chem. A
117
,
8782
(
2013
).
47.
G.
George
and
G.
Morris
,
J. Mol. Spectrosc.
26
,
67
(
1968
).
48.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).

Supplementary Material

You do not currently have access to this content.