We discuss the microscopic mechanisms by which low-temperature amorphous states, such as ultrastable glasses, transform into equilibrium fluids, after a sudden temperature increase. Experiments suggest that this process is similar to the melting of crystals, thus differing from the behaviour found in ordinary glasses. We rationalize these observations using the physical idea that the transformation process takes place close to a “hidden” equilibrium first-order phase transition, which is observed in systems of coupled replicas. We illustrate our views using simulation results for a simple two-dimensional plaquette spin model, which is known to exhibit a range of glassy behaviour. Our results suggest that nucleation-and-growth dynamics, as found near ordinary first-order transitions, is also the correct theoretical framework to analyse the melting of ultrastable glasses. Our approach provides a unified understanding of multiple experimental observations, such as propagating melting fronts, large kinetic stability ratios, and “giant” dynamic length scales. We also provide a comprehensive discussion of available theoretical pictures proposed in the context of ultrastable glass melting.

1.
S. F.
Swallen
,
K. L.
Kearns
,
M. K.
Mapes
,
Y. S.
Kim
,
R. J.
McMahon
,
M. D.
Ediger
,
T.
Wu
,
L.
Yu
, and
S.
Satija
,
Science
315
,
353
(
2007
).
2.
K. L.
Kearns
,
M. D.
Ediger
,
H.
Heiko
, and
C.
Schick
,
J. Phys. Chem. Lett.
1
,
388
(
2010
).
3.
K.
Dawson
,
L. A.
Kopff
,
L.
Zhu
,
R. J.
McMahon
,
L.
Yu
,
R.
Richert
, and
M. D.
Ediger
,
J. Chem. Phys.
136
,
094505
(
2012
).
4.
S. S.
Dalal
and
M. D.
Ediger
,
J. Phys. Chem. Lett.
3
,
1229
(
2012
).
5.
Y.
Guo
,
A.
Morozov
,
D.
Schneider
,
J. W.
Chung
,
C.
Zhang
,
M.
Waldmann
,
N.
Yao
,
G.
Fytas
,
C. B.
Arnold
, and
R. D.
Priestley
,
Nat. Mater.
11
,
337
(
2012
).
6.
L.
Berthier
and
M. D.
Ediger
,
Phys. Today
69
(
1
),
40
(
2016
).
7.
L.
Berthier
and
G.
Biroli
,
Rev. Mod. Phys.
83
,
587
(
2011
).
8.
A.
Sepúlveda
,
M.
Tylinski
,
A.
Guiseppi-Elie
,
R.
Richert
, and
M. D.
Ediger
,
Phys. Rev. Lett.
113
,
045901
(
2014
).
9.
S. F.
Swallen
,
K.
Traynor
,
R. J.
McMahon
,
M. D.
Ediger
, and
T. E.
Mates
,
Phys. Rev. Lett.
102
,
065503
(
2009
).
10.
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
1353
(
2009
).
11.
M. D.
Ediger
,
Annu. Rev. Phys. Chem.
51
,
99
(
2000
).
12.
Dynamical Heterogeneities in Glasses, Colloids and Granular Materials
, edited by
L.
Berthier
,
G.
Biroli
,
J.-P.
Bouchaud
,
L.
Cipelletti
, and
W.
van Saarloos
(
Oxford University Press
,
Oxford
,
2011
).
13.
T.
Pérez-Castaneda
,
C.
Rodriguez-Tinoco
,
J.
Rodriguez-Viejo
, and
M. A.
Ramos
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
11275
(
2014
).
14.
H. B.
Yu
,
M.
Tylinski
,
A.
Guiseppi-Elie
,
M. D.
Ediger
, and
R.
Richert
,
Phys. Rev. Lett.
115
,
185501
(
2015
).
15.
S.
Franz
and
G.
Parisi
,
Phys. Rev. Lett.
79
,
2486
(
1997
).
16.
L.
Berthier
,
Phys. Rev. E
88
,
022313
(
2013
).
17.
L.
Berthier
and
R. L.
Jack
,
Phys. Rev. Lett.
114
,
205701
(
2015
).
18.
M. E. J.
Newman
and
C.
Moore
,
Phys. Rev. E
60
,
5068
(
1999
).
19.
J. P.
Garrahan
and
M. E. J.
Newman
,
Phys. Rev. E
62
,
7670
(
2000
).
20.
J. P.
Garrahan
,
J. Phys.: Condens. Matter
14
,
1571
(
2002
).
21.
R. L.
Jack
and
J. P.
Garrahan
,
J. Chem. Phys.
123
,
164508
(
2005
).
22.
R. L.
Jack
,
L.
Berthier
, and
J. P.
Garrahan
,
Phys. Rev. E
72
,
016103
(
2005
).
23.
R. L.
Jack
,
L.
Berthier
, and
J. P.
Garrahan
,
J. Stat. Mech.
2006
,
P12005
.
24.
R. L.
Jack
and
L.
Berthier
,
Phys. Rev. E
85
,
021120
(
2012
).
25.
C.
Cammarota
and
G.
Biroli
,
EPL
98
,
36005
(
2012
).
26.
J. P.
Garrahan
,
Phys. Rev. E
89
,
030301
(
2014
).
27.
R. M.
Turner
,
R. L.
Jack
, and
J. P.
Garrahan
,
Phys. Rev. E
92
,
022115
(
2015
).
28.
R. L.
Jack
and
J. P.
Garrahan
,
Phys. Rev. Lett.
116
,
055702
(
2016
).
29.
S.
Franz
,
M.
Cardenas
, and
G.
Parisi
,
J. Chem. Phys.
110
,
1726
(
1999
).
30.
C.
Cammarota
,
A.
Cavagna
,
I.
Giardina
,
G.
Gradenigo
,
T. S.
Grigera
,
G.
Parisi
, and
P.
Verrocchio
,
Phys. Rev. Lett.
105
,
055703
(
2010
).
31.
D.
Chandler
and
J. P.
Garrahan
,
Annu. Rev. Phys. Chem.
61
,
191
(
2010
).
32.
S.
Singh
,
M. D.
Ediger
, and
J. J.
de Pablo
,
Nat. Mater.
12
,
139
(
2013
).
33.
I.
Lyubimov
,
M. D.
Ediger
, and
J. J.
de Pablo
,
J. Chem. Phys.
139
,
144505
(
2013
).
34.
P.-H.
Lin
,
I.
Lyubimov
,
L.
Yu
,
M. D.
Ediger
, and
J. J.
de Pablo
,
J. Chem. Phys.
140
,
204504
(
2014
).
35.
G. M.
Hocky
,
L.
Berthier
, and
D. R.
Reichman
,
J. Chem. Phys.
141
,
224503
(
2014
).
36.
S.
Léonard
and
P.
Harrowell
,
J. Chem. Phys.
133
,
244502
(
2010
).
37.
I.
Douglass
and
P.
Harrowell
,
J. Chem. Phys.
138
,
12A516
(
2013
).
38.
R.
Gutierrez
and
J. P.
Garrahan
, e-print arXiv:1604.03495.
39.
F.
Krzakala
and
L.
Zdeborova
,
Phys. Rev. Lett.
102
,
238701
(
2009
).
40.
J. P.
Garrahan
,
P.
Sollich
, and
C.
Toninelli
, “
Kinetically constrained models
,” in
Dynamical Heterogeneities in Glasses, Colloids, and Granular Media
, edited by
L.
Berthier
,
G.
Biroli
,
J.-P.
Bouchaud
,
L.
Cipelletti
, and
W.
van Saarloos
(
Oxford University Press
,
Oxford
,
2011
), Chap. 10.
41.
H.
Staley
,
E.
Flenner
, and
G.
Szamel
,
J. Chem. Phys.
142
,
244508
(
2015
).
42.
P. G.
Debenedetti
,
Metastable Liquids: Concepts and Principles
(
Princeton University Press
,
Princeton
,
1996
).
43.
R. P.
Sear
,
J. Phys.: Condens. Matter
19
,
033101
(
2007
).
44.
S.
Franz
and
G.
Parisi
,
J. Stat. Mech.
2013
,
P11012
.
45.
G.
Biroli
,
C.
Cammarota
,
G.
Tarjus
, and
M.
Tarzia
,
Phys. Rev. Lett.
112
,
175701
(
2014
).
46.
M.
Avrami
,
J. Chem. Phys.
7
,
1103
(
1939
).
47.
48.
A. B.
Bortz
,
M. H.
Kalos
, and
J. L.
Lebowitz
,
J. Comput. Phys.
17
,
10
(
1975
).
49.
Y.
Imry
and
S.-K.
Ma
,
Phys. Rev. Lett.
35
,
1399
(
1975
).
50.
M.
Aizenman
and
J.
Wehr
,
Phys. Rev. Lett.
62
,
2503
(
1989
).
51.
K. J.
Dawson
,
L.
Zhu
,
L.
Yu
, and
M. D.
Ediger
,
J. Phys. Chem. B
115
,
455
(
2011
).
52.
C.
Rodriguez-Tinoco
,
M.
Gonzalez-Silveira
,
J.
Rafols-Ribe
,
A. F.
Lopeandia
, and
J.
Rodriguez-Viejo
,
Phys. Chem. Chem. Phys.
17
,
31195
(
2015
).
54.
J. R.
Heringa
,
H. W.
Blöte
, and
A.
Hoogland
,
Phys. Rev. Lett.
63
,
1546
(
1989
).
55.
C.
Toninelli
,
M.
Wyart
,
L.
Berthier
,
G.
Biroli
, and
J.-P.
Bouchaud
,
Phys. Rev. E
71
,
041505
(
2005
).
56.
F.
Krzakala
and
L.
Zdeborova
,
J. Chem. Phys.
134
,
034512
(
2011
).
57.
F.
Krzakala
and
L.
Zdeborova
,
J. Chem. Phys.
134
,
034513
(
2011
).
58.
M.
Tylinski
,
A.
Sepulveda
,
D. M.
Walters
,
Y.
Chua
,
C.
Schick
, and
M. D.
Ediger
,
J. Chem. Phys.
143
,
244509
(
2015
).
59.
A.
Sepulveda
,
S. F.
Swallen
,
L. A.
Kopff
,
R. J.
McMahon
, and
M. D.
Ediger
,
J. Chem. Phys.
137
,
204508
(
2012
).
60.
G. H.
Fredrickson
and
H. C.
Andersen
,
Phys. Rev. Lett.
53
,
1244
(
1984
).
61.
W.
Kob
and
H. C.
Andersen
,
Phys. Rev. E
38
,
4364
(
1993
).
62.
J. P.
Garrahan
,
R. L.
Jack
,
V.
Lecomte
,
E.
Pitard
,
K.
van Duijvendijk
, and
F.
van Wijland
,
Phys. Rev. Lett.
98
,
195702
(
2007
).
63.
J. P.
Garrahan
,
R. L.
Jack
,
V.
Lecomte
,
E.
Pitard
,
K.
van Duijvendijk
, and
F.
van Wijland
,
J. Phys. A
42
,
075007
(
2009
).
64.
Y. S.
Elmatad
and
R. L.
Jack
,
J. Chem. Phys.
138
,
12A531
(
2013
).
65.
A.
Wisitsorasak
and
P. G.
Wolynes
,
Phys. Rev. E
88
,
022308
(
2013
).
66.
A.
Wisitsorasak
and
P. G.
Wolynes
,
J. Phys. Chem. B
118
,
7835
(
2014
).
67.
L.
Berthier
and
D.
Coslovich
,
Proc. Natl. Acad. Sci. U. S. A.
111
,
11668
(
2014
).
68.
J.-P.
Bouchaud
and
G.
Biroli
,
J. Chem. Phys.
121
,
7347
(
2004
).
69.
P.
Sollich
and
M. R.
Evans
,
Phys. Rev. Lett.
83
,
3238
(
1999
).
You do not currently have access to this content.