It is demonstrated that the signatures of the Hubbard Model in the strongly interacting regime can be simulated by modifying the screening in the limit of zero wavevector in Projector-Augmented Wave GW calculations for systems without significant nesting. This modification, when applied to the Mott insulator CuO, results in the opening of the Mott gap by the splitting of states at the Fermi level into upper and lower Hubbard bands, and exhibits a giant transfer of spectral weight upon electron doping. The method is also employed to clearly illustrate that the M1 and M2 forms of vanadium dioxide are fundamentally different types of insulator. Standard GW calculations are sufficient to open a gap in M1 VO2, which arise from the Peierls pairing filling the valence band, creating homopolar bonds. The valence band wavefunctions are stabilized with respect to the conduction band, reducing polarizability and pushing the conduction band eigenvalues to higher energy. The M2 structure, however, opens a gap from strong on-site interactions; it is a Mott insulator.

1.
E.
Dagotto
, “
Complexity in strongly correlated electronic systems
,”
Science
309
,
257
262
(
2005
).
2.
H.
Takagi
and
H. Y.
Hwang
, “
An emergent change of phase for electronics
,”
Science
327
,
1601
1602
(
2010
).
3.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev.
136
,
864
871
(
1964
).
4.
M.
Imada
,
A.
Fujimori
, and
Y.
Tokura
, “
Metal-insulator transitions
,”
Rev. Mod. Phys.
70
,
1039
1263
(
1998
).
5.
J.
Hubbard
, “
Electron correlations in narrow energy bands
,”
Proc. R. Soc. A
276
,
238
257
(
1963
).
6.
G.
Kotliar
,
S.
Savrasov
,
K.
Haule
,
V.
Oudovenko
,
O.
Parcollet
, and
C.
Marianetti
, “
Electronic structure calculations with dynamical mean-field theory
,”
Rev. Mod. Phys.
78
,
865
951
(
2006
).
7.
S.-K.
Mo
,
J.
Denlinger
,
H.-D.
Kim
,
J.-H.
Park
,
J.
Allen
,
A.
Sekiyama
,
A.
Yamasaki
,
K.
Kadono
,
S.
Suga
,
Y.
Saitoh
,
T.
Muro
,
P.
Metcalf
,
G.
Keller
,
K.
Held
,
V.
Eyert
,
V.
Anisimov
, and
D.
Vollhardt
, “
Prominent quasiparticle peak in the photoemission spectrum of the metallic phase of V 2O3
,”
Phys. Rev. Lett.
90
,
186403
(
2003
).
8.
M.
Aichhorn
,
S.
Biermann
,
T.
Miyake
,
A.
Georges
, and
M.
Imada
, “
Theoretical evidence for strong correlations and incoherent metallic state in FeSe
,”
Phys. Rev. B
82
,
064504
(
2010
).
9.
F.
Lechermann
,
A.
Georges
,
A.
Poteryaev
,
S.
Biermann
,
M.
Posternak
,
A.
Yamasaki
, and
O. K.
Andersen
, “
Dynamical mean-field theory using Wannier functions: A flexible route to electronic structure calculations of strongly correlated materials
,”
Phys. Rev. B
74
,
1
26
(
2006
); e-print arXiv:0605539 [cond-mat].
10.
L.
Hedin
, “
New method for calculating the one-particle Green’s function with application to the electron-gas problem
,”
Phys. Rev.
139
,
796
823
(
1965
).
11.
F.
Aryasetiawan
and
O.
Gunnarsson
, “
The GW method
,”
Rep. Prog. Phys.
61
,
237
312
(
1998
).
12.
S. V.
Faleev
,
M.
van Schilfgaarde
, and
T.
Kotani
, “
All-electron self-consistent GW approximation: Application to Si, MnO, and NiO
,”
Phys. Rev. Lett.
93
,
126406
(
2004
).
13.
M.
Shishkin
and
G.
Kresse
, “
Self-consistent GW calculations for semiconductors and insulators
,”
Phys. Rev. B
75
,
235102
(
2007
).
14.
V. I.
Anisimov
,
F.
Aryasetiawan
, and
A. I.
Lichtenstein
, “
First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA + U method
,”
J. Phys.: Condens. Matter
9
,
767
808
(
1997
).
15.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
, “
Hybrid functionals based on a screened Coulomb potential
,”
J. Chem. Phys.
118
,
8207
8215
(
2003
).
16.
H.
Jiang
,
R. I.
Gomez-Abal
,
P.
Rinke
, and
M.
Scheffler
, “
Localized and itinerant states in lanthanide oxides united by GW @ LDA U
,”
Phys. Rev. Lett.
102
,
126403
(
2009
).
17.
H.
Jiang
,
R. I.
Gomez-abal
,
P.
Rinke
, and
M.
Scheffler
, “
First-principles modeling of localized d states with the GW @ LDA + U approach
,”
Phys. Rev. B
82
,
045108
(
2010
).
18.
C.
Rödl
,
F.
Sottile
, and
L.
Reining
, “
Quasiparticle excitations in the photoemission spectrum of CuO from first principles: A GW study
,”
Phys. Rev. B
91
,
045102
(
2015
).
19.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
20.
S.
Lany
, “
Band-structure calculations for the 3d transition metal oxides in GW
,”
Phys. Rev. B
87
,
085112
(
2013
).
21.
M.
Gatti
and
M.
Guzzo
, “
Dynamical screening in correlated metals: Spectral properties of SrV O3 in the GW approximation and beyond
,”
Phys. Rev. B
87
,
155147
(
2013
).
22.
M.
Guzzo
,
G.
Lani
,
F.
Sottile
,
P.
Romaniello
,
M.
Gatti
,
J. J.
Kas
,
J. J.
Rehr
,
M. G.
Silly
,
F.
Sirotti
, and
L.
Reining
, “
Valence electron photoemission spectrum of semiconductors: Ab initio description of multiple satellites
,”
Phys. Rev. Lett.
107
,
1
5
(
2011
); e-print arXiv:1107.2207.
23.
T.
Ayral
,
P.
Werner
, and
S.
Biermann
, “
Spectral properties of correlated materials: Local vertex and nonlocal two-particle correlations from combined GW and dynamical mean field theory
,”
Phys. Rev. Lett.
109
,
226401
(
2012
).
24.
T.
Ayral
,
S.
Biermann
, and
P.
Werner
, “
Screening and nonlocal correlations in the extended Hubbard model from self-consistent combined GW and dynamical mean field theory
,”
Phys. Rev. B
87
,
125149
(
2013
).
25.
P.
Hansmann
,
T.
Ayral
,
L.
Vaugier
,
P.
Werner
, and
S.
Biermann
, “
Long-range coulomb interactions in surface systems: A first-principles description within self-consistently combined GW and dynamical mean-field theory
,”
Phys. Rev. Lett.
110
,
166401
(
2013
).
26.
J. M.
Tomczak
,
M.
Casula
,
T.
Miyake
,
F.
Aryasetiawan
, and
S.
Biermann
, “
Combined GW and dynamical mean-field theory: Dynamical screening effects in transition metal oxides
,”
Europhys. Lett.
100
,
67001
(
2012
).
27.
R.
Sakuma
,
P.
Werner
, and
F.
Aryasetiawan
, “
Electronic structure of SrV O3 within GW + DMFT
,”
Phys. Rev. B
88
,
235110
(
2013
).
28.
M.
Shishkin
and
G.
Kresse
, “
Implementation and performance of the frequency-dependent GW method within the PAW framework
,”
Phys. Rev. B
74
,
035101
(
2006
).
29.
W.
Schmidt
,
S.
Glutsch
,
P.
Hahn
, and
F.
Bechstedt
, “
Efficient O(N2) method to solve the Bethe-Salpeter equation
,”
Phys. Rev. B
67
,
1
7
(
2003
).
30.
M. S.
Hybertsen
and
S. G.
Louie
, “
Ab initio static dielectric matrices from the density-functional approach. I. Formulation and application to semiconductors and insulators
,”
Phys. Rev. B
35
,
5585
5601
(
1987
).
31.
M.
Gajdoš
,
K.
Hummer
,
G.
Kresse
,
J.
Furthmüller
, and
F.
Bechstedt
, “
Linear optical properties in the projector-augmented wave methodology
,”
Phys. Rev. B
73
,
045112
(
2006
).
32.
P.
Nozières
and
J. M.
Luttinger
, “
Derivation of the Landau theory of Fermi liquids. I. Formal preliminaries
,”
Phys. Rev.
127
,
1423
1431
(
1962
).
33.
P. E.
Blochl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
34.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
35.
R. W. G.
Wyckhoff
,
Crystal Structures
, 2nd ed. (
Interscience Publishers
,
New York
,
1963
), p.
85
.
36.
W.
Kohn
and
L. J.
Sham
, “
Self-consistent equations including exchange and correlations effects
,”
Phys. Rev.
140
,
1133
1138
(
1965
).
37.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
38.
P. E.
Blochl
,
O.
Jepsen
, and
O. K.
Andersen
, “
Improved tetrahedron method for Brillouin-zone integrations
,”
Phys. Rev. B
49
,
16223
16233
(
1994
).
39.
G.
Andersson
, “
Studies on vanadium oxides. I. Phase analysis
,”
Acta Chem. Scand.
8
,
1599
1606
(
1954
).
40.
M.
Marezio
,
D. B.
McWhan
,
J. P.
Remeika
, and
P. D.
Dernier
, “
Structural aspects of the metal-insulator transitions in Cr-Doped VO2
,”
Phys. Rev. B
91
,
2541
2551
(
1971
).
41.
V.
Eyert
, “
The metal-insulator transitions of VO2: A band theoretical approach
,”
Ann. Phys.
11
,
650
702
(
2002
).
42.
M.
Takahashi
and
J.
Igarashi
, “
Electronic excitations in cupric oxide
,”
Phys. Rev. B
56
,
12818
12824
(
1997
).
43.
M.
Heinemann
,
B.
Eifert
, and
C.
Heiliger
, “
Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3
,”
Phys. Rev. B
87
,
115111
(
2013
).
44.
H.
Eskes
,
M. B. J.
Meinders
, and
G. A.
Sawatzky
, “
Anomalous transfer of spectral wight in doped strongly correlated systems
,”
Phys. Rev. Lett.
67
,
1035
1038
(
1991
).
45.
M.
Sing
,
S.
Glawion
,
M.
Schlachter
,
M. R.
Scholz
,
K.
Goß
,
J.
Heidler
,
G.
Berner
, and
R.
Claessen
, “
Photoemission of a doped Mott insulator: Spectral weight transfer and a qualitative Mott-Hubbard description
,”
Phys. Rev. Lett.
106
,
056403
(
2011
).
46.
M.
Aichhorn
,
L.
Pourovskii
,
V.
Vildosola
,
M.
Ferrero
,
O.
Parcollet
,
T.
Miyake
,
A.
Georges
, and
S.
Biermann
, “
Dynamical mean-field theory within an augmented plane-wave framework: Assessing electronic correlations in the iron pnictide LaFeAsO
,”
Phys. Rev. B
80
,
085101
(
2009
).
47.
J.
Ferber
,
K.
Foyevtsova
,
R.
Valentí
, and
H. O.
Jeschke
, “
LDA + DMFT study of the effects of correlation in LiFeAs
,”
Phys. Rev. B
85
,
094505
(
2012
).
48.
P.
Werner
,
M.
Casula
,
T.
Miyake
,
F.
Aryasetiawan
,
A. J.
Millis
, and
S.
Biermann
, “
Satellites and large doping and temperature dependence of electronic properties in hole-doped BaFe2As2
,”
Nat. Phys.
8
,
331
337
(
2012
).
49.
M.
Nakano
,
K.
Shibuya
,
D.
Okuyama
,
T.
Hatano
,
S.
Ono
,
M.
Kawasaki
,
Y.
Iwasa
, and
Y.
Tokura
, “
Collective bulk carrier delocalization driven by electrostatic surface charge accumulation
,”
Nature
487
,
459
462
(
2012
).
50.
M.
Liu
,
H. Y.
Hwang
,
H.
Tao
,
A. C.
Strikwerda
,
K.
Fan
,
G. R.
Keiser
,
A. J.
Sternbach
,
K. G.
West
,
S.
Kittiwatanakul
,
J.
Lu
,
S. A.
Wolf
,
F. G.
Omenetto
,
X.
Zhang
,
K. A.
Nelson
, and
R. D.
Averitt
, “
Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial
,”
Nature
487
,
345
348
(
2012
).
51.
J. H.
Park
,
J. M.
Coy
,
T. S.
Kasirga
,
C.
Huang
,
Z.
Fei
,
S.
Hunter
, and
D. H.
Cobden
, “
Measurement of a solid-state triple point at the metal-insulator transition in VO2
,”
Nature
500
,
431
434
(
2013
).
52.
J. D.
Budai
,
J.
Hong
,
M. E.
Manley
,
E. D.
Specht
,
C. W.
Li
,
J. Z.
Tischler
,
D. L.
Abernathy
,
A. H.
Said
,
B. M.
Leu
,
L. A.
Boatner
,
R. J.
Mcqueeney
, and
O.
Delaire
, “
Metallization of vanadium dioxide driven by large phonon entropy
,”
Nature
515
,
535
539
(
2014
).
53.
J. B.
Goodenough
, “
The two components of the crystallographic transition in VO2
,”
J. Solid State Chem.
3
,
490
500
(
1971
).
54.
S.
Shin
,
S.
Suga
,
M.
Taniguchi
,
M.
Fujisawa
,
H.
Kanzaki
,
A.
Fujimori
,
H.
Daimon
,
Y.
Ueda
,
K.
Kosuge
, and
S.
Kachi
, “
Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V 6O13, and V 2O3
,”
Phys. Rev. B
41
,
4993
5009
(
1990
).
55.
M.
Gatti
,
F.
Bruneval
,
V.
Olevano
, and
L.
Reining
, “
Understanding correlations in vanadium dioxide from first principles
,”
Phys. Rev. Lett.
99
,
266402
(
2007
).
56.
J. M.
Booth
and
P. S.
Casey
, “
Production of VO2 M1 and M2 nanoparticles and composites and the influence of the substrate on the structural phase transition
,”
ACS Appl. Mater. Interfaces
1
,
1899
1905
(
2009
).
57.
J. P.
Pouget
,
H.
Launois
,
M.
Rice
,
Tim
,
P. D.
Dernier
,
A.
Gossard
,
G.
Villeneuve
, and
P.
Hagenmuller
, “
Dimerization of a linear Heisenberg chain in the insulating phases of V1−xCrxO2
,”
Phys. Rev. B
10
,
1801
1815
(
1974
).
58.
W. H.
Brito
,
M. C. O.
Aguiar
,
K.
Haule
, and
G.
Kotliar
, “
Metal-insulator transition in V O2: A DFT + DMFT perspective
,” e-print arXiv:1509.02968v3 [cond-mat.str-el].
59.
A. S.
Belozerov
,
M. A.
Korotin
,
V. I.
Anisimov
, and
A. I.
Poteryaev
, “
Monoclinic M1 phase of VO2: Mott-Hubbard versus band insulator
,”
Phys. Rev. B
85
,
045109
(
2012
).
60.
N. F.
Mott
and
L.
Friedman
, “
Metal-insulator transitions in VO2, Ti2O3 and Ti2−xVxO3
,”
Philos. Mag.
30
,
389
402
(
1974
).

Supplementary Material

You do not currently have access to this content.