Free surfaces have been known to significantly influence the crystallization of tetrahedral liquids. However, a comprehensive understanding of the influence mechanism is still lacking at present. By employing molecular dynamics simulations, we find that the nucleation probability in nanoscale silicon films and droplets exhibits a ripple-like distribution spatially. This phenomenon is closely related to the structural order wave, which is induced by the density fluctuations arisen from the volume expansion in a confinement environment defined by free surfaces. By the aid of the intrinsic relation between the tetrahedral order and the density, the analytic results based on the density wave equation well account for the nucleation probability distributions in both films and droplets. Our findings reveal the underlying mechanism of the surface-assisted nucleation in tetrahedral liquids and provide an overall description of crystallization in liquid films and droplets.

1.
S.
Ansell
,
S.
Krishnan
,
J. J.
Felten
, and
D. L.
Price
,
J. Phys.: Condens. Matter
10
,
L73
(
1998
).
2.
A.
Nilsson
and
L. G. M.
Pettersson
,
Chem. Phys.
389
,
1
(
2011
).
3.
A. K.
Soper
and
M. A.
Ricci
,
Phys. Rev. Lett.
84
,
2881
(
2000
).
4.
G.
Kresse
and
H.
Hafner
,
Phys. Rev. B
49
,
14252
(
1994
).
5.
Q.
Mei
,
C. J.
Benmore
, and
J. K. R.
Weber
,
Phys. Rev. Lett.
98
,
057802
(
2007
).
6.
M.
Micoulaut
,
L.
Cormier
, and
G. S.
Henderson
,
J. Phys.: Condens. Matter
18
,
R753
(
2006
).
7.
S.
Sastry
and
C. A.
Angell
,
Nat. Mater.
2
,
739
(
2003
).
8.
N.
Jakse
,
L.
Hennet
,
D. L.
Price
,
S.
Krishnan
,
T.
Key
,
E.
Artacho
,
B.
Glorieux
,
A.
Pasturel
, and
M. L.
Saboungi
,
Appl. Phys. Lett.
83
,
4734
(
2003
).
9.
O.
Mishima
and
H. E.
Stanley
,
Nature
396
,
329
(
1998
).
10.
C.
Desgranges
and
J.
Delhommelle
,
J. Am. Chem. Soc.
133
,
2872
(
2011
).
11.
T.
Li
,
D.
Donadio
,
L. M.
Ghiringhelli
, and
G.
Galli
,
Nat. Mater.
8
,
726
(
2009
).
12.
R. A.
Shaw
,
A. J.
Durant
, and
Y.
Mi
,
J. Phys. Chem. B
109
,
9865
(
2005
).
13.
A.
Shah
,
P.
Torres
,
R.
Tscharner
,
N.
Wyrsch
, and
H.
Keppner
,
Science
285
,
692
(
1999
).
14.
T.
Bartels-Rausch
,
Nature
494
,
27
(
2013
).
15.
A.
Tabazadeh
,
Y. S.
Djikaev
, and
H.
Reiss
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
15873
(
2002
).
16.
D.
Duft
and
T.
Leisner
,
Atmos. Chem. Phys. Discuss.
4
,
3077
(
2004
).
17.
M. E.
Earle
,
T.
Kuhn
,
A. F.
Khalizov
, and
J.
Sloan
,
J. Atmos. Chem. Phys.
10
,
7945
(
2010
).
18.
T.
Li
,
D.
Donadio
, and
G.
Galli
,
Nat. Commun.
4
,
1887
(
2013
).
19.
A.
Haji-Akbari
,
R. S.
DeFever
,
S.
Sarupria
, and
P. G.
Debenedetti
,
Phys. Chem. Chem. Phys.
16
,
25916
(
2014
).
20.
Y. J.
,
X. X.
Zhang
, and
M.
Chen
,
J. Phys. Chem. B
117
,
10241
(
2013
).
21.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
22.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
23.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
24.
W.
Shinoda
,
M.
Shiga
, and
M.
Mikami
,
Phys. Rev. B
69
,
134103
(
2004
).
25.
E. B.
Moore
,
E.
de la Llave
,
K.
Welke
,
D. A.
Scherlis
, and
V.
Molinero
,
Phys. Chem. Chem. Phys.
12
,
4124
(
2010
).
26.
A. C.
Belch
and
S. A.
Rice
,
J. Chem. Phys.
86
,
5676
(
1987
).
27.
J.
Wedekind
,
R.
Strey
, and
D.
Reguera
,
J. Chem. Phys.
126
,
134103
(
2007
).
28.
J.
Wedekind
and
D.
Reguera
,
J. Phys. Chem. B
112
,
11060
(
2008
).
29.
S. E. M.
Lundrigan
and
I.
Saika-Voivod
,
J. Chem. Phys.
131
,
104503
(
2009
).
30.
M.
Matsumoto
,
Phys. Rev. Lett.
103
,
017801
(
2009
).
31.
J.
Russo
and
H.
Tanaka
,
Nat. Commun.
5
,
3556
(
2014
).
32.
O. G.
Shpyrko
,
R.
Streitel
,
V. S. K.
Balagurusamy
,
A. Y.
Grigoriev
,
M.
Deutsch
,
B. M.
Ocko
,
M.
Meron
,
B.
Lin
, and
P. S.
Pershan
,
Science
313
,
77
(
2006
).
33.
P. W.
Sutter
and
E. A.
Sutter
,
Nat. Mater.
6
,
363
(
2007
).
34.
Y. J.
and
M.
Chen
,
Acta Mater.
60
,
4636
(
2012
).
You do not currently have access to this content.