Quantum dynamics simulations require prior knowledge of the potential energy surface as well as the kinetic energy operator. Typically, they are evaluated in a low-dimensional subspace of the full configuration space of the molecule as its dimensionality increases proportional to the number of atoms. This entails the challenge to find the most suitable subspace. We present an approach to design specially adapted reactive coordinates spanning this subspace. In addition to the essential geometric changes, these coordinates take into account the relaxation of the non-reactive coordinates without the necessity of performing geometry optimizations at each grid point. The method is demonstrated for an ultrafast photoinduced bond cleavage in a commonly used organic precursor for the generation of electrophiles. The potential energy surfaces for the reaction as well as the Wilson G-matrix as part of the kinetic energy operator are shown for a complex chemical reaction, both including the relaxation of the non-reactive coordinates on equal footing. A microscopic interpretation of the shape of the G-matrix elements allows to analyze the impact of the non-reactive coordinates on the kinetic energy operator. Additionally, we compare quantum dynamics simulations with and without the relaxation of the non-reactive coordinates included in the kinetic energy operator to demonstrate its influence.

1.
C.
Gollub
,
M.
Kowalewski
,
S.
Thallmair
, and
R.
de Vivie-Riedle
,
Phys. Chem. Chem. Phys.
12
,
15780
(
2010
).
2.
P.
von den Hoff
,
S.
Thallmair
,
M.
Kowalewski
,
R.
Siemering
, and
R.
de Vivie-Riedle
,
Phys. Chem. Chem. Phys.
14
,
14460
(
2012
).
3.
M.
Saab
,
L. J.
Doriol
,
B.
Lasorne
,
S.
Guérin
, and
F.
Gatti
,
Chem. Phys.
442
,
93
(
2014
).
4.
D.
Keefer
,
S.
Thallmair
,
J. P. P.
Zauleck
, and
R.
de Vivie-Riedle
,
J. Phys. B: At., Mol. Opt. Phys.
48
,
234003
(
2015
).
5.
A.
Hofmann
and
R.
de Vivie-Riedle
,
Chem. Phys. Lett.
346
,
299
(
2001
).
6.
S.
Thallmair
,
M.
Kowalewski
,
J. P. P.
Zauleck
,
M. K.
Roos
, and
R.
de Vivie-Riedle
,
J. Phys. Chem. Lett.
5
,
3480
(
2014
).
7.
D.
Geppert
,
L.
Seyfarth
, and
R.
de Vivie-Riedle
,
Appl. Phys. B: Lasers Opt.
79
,
987
(
2004
).
8.
S.
Thallmair
,
R.
Siemering
,
P.
Kölle
,
M.
Kling
,
M.
Wollenhaupt
,
T.
Baumert
, and
R.
de Vivie-Riedle
, in
Molecular Quantum Dynamics—From Theory to Applications
, edited by
F.
Gatti
(
Springer-Verlag
,
2014
), pp.
213
248
.
9.
M.
Beck
,
A.
Jäckle
,
G.
Worth
, and
H.-D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
10.
Multidimensional Quantum Dynamics: MCTDH Theory and Applications
, edited by
H.-D.
Meyer
,
G. A.
Worth
, and
F.
Gatti
(
Wiley-VCH Verlag GmbH & Co. KGaA
,
Weinheim, Germany
,
2009
).
11.
H.-D.
Meyer
,
WIREs: Comput. Mol. Sci.
2
,
351
(
2012
).
12.
M.
Barbatti
,
WIREs: Comput. Mol. Sci.
1
,
620
(
2011
).
13.
W. H.
Miller
,
N. C.
Handy
, and
J. E.
Adams
,
J. Chem. Phys.
72
,
99
(
1980
).
14.
E.
Kraka
,
WIREs: Comput. Mol. Sci.
1
,
531
(
2011
).
15.
M.
Kowalewski
,
J.
Mikosch
,
R.
Wester
, and
R.
de Vivie-Riedle
,
J. Phys. Chem. A
118
,
4661
(
2014
).
16.
C.
Iung
and
F.
Gatti
,
Int. J. Quantum Chem.
106
,
130
(
2006
).
17.
F.
Gatti
and
C.
Iung
,
Phys. Rep.
484
,
1
(
2009
).
18.
L.
Joubert-Doriol
,
B.
Lasorne
,
F.
Gatti
,
M.
Schröder
,
O.
Vendrell
, and
H.-D.
Meyer
,
Comput. Theor. Chem.
990
,
75
(
2012
).
19.
E. V.
Gromov
,
A. B.
Trofimov
,
F.
Gatti
, and
H.
Köppel
,
J. Chem. Phys.
133
,
164309
(
2010
).
20.
D.
Geppert
,
A.
Hofmann
, and
R.
de Vivie-Riedle
,
J. Chem. Phys.
119
,
5901
(
2003
).
21.
B. P.
Fingerhut
,
D.
Geppert
, and
R.
de Vivie-Riedle
,
Chem. Phys.
343
,
329
(
2008
).
22.
A.
Hofmann
and
R.
de Vivie-Riedle
,
J. Chem. Phys.
112
,
5054
(
2000
).
23.
B.
Reischl
,
R.
de Vivie-Riedle
,
S.
Rutz
, and
E.
Schreiber
,
J. Chem. Phys.
104
,
8857
(
1996
).
24.
A.
Markmann
,
G. A.
Worth
,
S.
Mahapatra
,
H.-D.
Meyer
,
H.
Köppel
, and
L. S.
Cederbaum
,
J. Chem. Phys.
123
,
204310
(
2005
).
25.
B.
Podolsky
,
Phys. Rev.
32
,
812
(
1928
).
26.
E. B.
Wilson
, Jr.
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations
(
McGraw-Hill
,
New York
,
1955
).
27.
J.
Ammer
,
C. F.
Sailer
,
E.
Riedle
, and
H.
Mayr
,
J. Am. Chem. Soc.
134
,
11481
(
2012
).
28.
J.
Ammer
and
H.
Mayr
,
J. Phys. Org. Chem.
26
,
956
(
2013
).
29.
S.
Thallmair
,
J. P. P.
Zauleck
, and
R.
de Vivie-Riedle
,
J. Chem. Theory Comput.
11
,
1987
(
2015
).
30.
S.
Thallmair
,
M. K.
Roos
, and
R.
de Vivie-Riedle
,
Struct. Dyn.
3
,
043205
(
2016
).
31.
L. J.
Schaad
and
J.
Hu
,
J. Mol. Struct.: THEOCHEM
185
,
203
(
1989
).
32.
D. J.
Tannor
,
Introduction to Quantum Mechanics: A Time-Dependent Perspective
(
University Science Books
,
Sausalito, California, USA
,
2007
).
33.
S.
Thallmair
,
B. P.
Fingerhut
, and
R.
de Vivie-Riedle
,
J. Phys. Chem. A
117
,
10626
(
2013
).
34.
E. A.
Coutsias
,
C.
Seok
, and
K. A.
Dill
,
J. Comput. Chem.
25
,
1849
(
2004
).
35.
M.
Svensson
,
S.
Humbel
,
R. D. J.
Froese
,
T.
Matsubara
,
S.
Sieber
, and
K.
Morokuma
,
J. Phys. Chem.
100
,
19357
(
1996
).
36.
M. J.
Bearpark
,
S. M.
Larkin
, and
T.
Vreven
,
J. Phys. Chem. A
112
,
7286
(
2008
).
37.
B. P.
Fingerhut
,
S.
Oesterling
,
K.
Haiser
,
K.
Heil
,
A.
Glas
,
W. J.
Schreier
,
W.
Zinth
,
T.
Carell
, and
R.
de Vivie-Riedle
,
J. Chem. Phys.
136
,
204307
(
2012
).
38.
L. W.
Chung
,
W. M. C.
Sameera
,
R.
Ramozzi
,
A. J.
Page
,
M.
Hatanaka
,
G. P.
Petrova
,
T. V.
Harris
,
X.
Li
,
Z.
Ke
,
F.
Liu
,
H.-B.
Li
,
L.
Ding
, and
K.
Morokuma
,
Chem. Rev.
115
,
5678
(
2015
).
39.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al, molpro, version 2012.1, a package ofab initio programs, 2012, see http://www.molpro.net.
40.
Y.
Zhao
and
D.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
41.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. J. A.
Montgomery
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09, Revision D.01, Inc., Wallingford, CT,
2013
.
42.
V.
Alexandrov
,
D. M. A.
Smith
,
H.
Rostkowska
,
M. J.
Nowak
,
L.
Adamowicz
, and
W.
McCarthy
,
J. Chem. Phys.
108
,
9685
(
1998
).
43.
C.
Eckart
,
Phys. Rev.
47
,
552
(
1935
).
44.
A. Y.
Dymarsky
and
K. N.
Kudin
,
J. Chem. Phys.
122
,
124103
(
2005
).
45.
K. N.
Kudin
and
A. Y.
Dymarsky
,
J. Chem. Phys.
122
,
224105
(
2005
).
46.
J. E.
Hadder
and
J. H.
Frederick
,
J. Chem. Phys.
97
,
3500
(
1992
).
47.
M.
Kowalewski
, “
Quantendynamik isolierter molekularer Systeme
,” Ph.D. thesis,
Ludwig-Maximilians-Universität München
,
2012
.
48.
H.
Tal-Ezer
and
R.
Kosloff
,
J. Chem. Phys.
81
,
3967
(
1984
).
49.
R.
Kosloff
and
H.
Tal-Ezer
,
Chem. Phys. Lett.
127
,
223
(
1986
).
You do not currently have access to this content.