Stochastic simulation of large biochemical reaction networks is often computationally expensive due to the disparate reaction rates and high variability of population of chemical species. An approach to accelerate the simulation is to allow multiple reaction firings before performing update by assuming that reaction propensities are changing of a negligible amount during a time interval. Species with small population in the firings of fast reactions significantly affect both performance and accuracy of this simulation approach. It is even worse when these small population species are involved in a large number of reactions. We present in this paper a new approximate algorithm to cope with this problem. It is based on bounding the acceptance probability of a reaction selected by the exact rejection-based simulation algorithm, which employs propensity bounds of reactions and the rejection-based mechanism to select next reaction firings. The reaction is ensured to be selected to fire with an acceptance rate greater than a predefined probability in which the selection becomes exact if the probability is set to one. Our new algorithm improves the computational cost for selecting the next reaction firing and reduces the updating the propensities of reactions.

1.
J. M.
Pedraza
and
A.
van Oudenaarden
, “
Noise propagation in gene networks
,”
Science
307
(
5717
),
1965
1969
(
2005
).
2.
H. H.
McAdams
and
A.
Arkin
, “
It’s a noisy business! Genetic regulation at the nanomolar scale
,”
Trends Genet.
15
(
2
),
65
(
1999
).
3.
H. H.
McAdams
and
A.
Arkin
, “
Stochastic mechanisms in gene expression
,”
Proc. Natl. Acad. Sci. U. S. A.
94
,
814
(
1997
).
4.
J.
Vilar
,
H.
Kueh
,
N.
Barkai
, and
S.
Leibler
, “
Mechanisms of noise-resistance in genetic oscillators
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
5988
(
2002
).
5.
E. M.
Ozbudak
,
M.
Thattai
,
I.
Kurtser
,
A. D.
Grossman
, and
A.
van Oudenaarden
, “
Regulation of noise in the expression of a single gene
,”
Nat. Genet.
31
,
69
73
(
2002
).
6.
A.
Arkin
,
J.
Ross
, and
H. H.
McAdams
, “
Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells
,”
Genetics
149
(
4
),
1633
1648
(
1998
).
7.
J. M.
Raser
and
E. K.
O’Shea
, “
Noise in gene expression: Origins, consequences and control
,”
Science
309
,
2010
2013
(
2005
).
8.
D.
Gillespie
, “
A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
,”
J. Comput. Phys.
22
(
4
),
403
434
(
1976
).
9.
D.
Gillespie
, “
Exact stochastic simulation of coupled chemical reactions
,”
J. Phys. Chem.
81
(
25
),
2340
2361
(
1977
).
10.
M.
Gibson
and
J.
Bruck
, “
Efficient exact stochastic simulation of chemical systems with many species and many channels
,”
J. Phys. Chem. A
104
(
9
),
1876
1889
(
2000
).
11.
D. F.
Anderson
, “
A modified next reaction method for simulating chemical systems with time dependent propensities and delays
,”
J. Chem. Phys.
127
(
21
),
214107
(
2007
).
12.
Y.
Cao
,
H.
Li
, and
L.
Petzold
, “
Efficient formulation of the stochastic simulation algorithm for chemically reacting systems
,”
J. Chem. Phys.
121
(
9
),
4059
(
2004
).
13.
J.
McCollum
 et al, “
The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior
,”
Comput. Biol. Chem.
30
(
1
),
39
49
(
2006
).
14.
T.
Schulze
, “
Efficient kinetic Monte Carlo simulation
,”
J. Comput. Phys.
227
(
4
),
2455
2462
(
2008
).
15.
A.
Slepoy
,
A. P.
Thompson
, and
S. J.
Plimpton
, “
A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks
,”
J. Chem. Phys.
128
(
20
),
205101
(
2008
).
16.
V. H.
Thanh
and
R.
Zunino
, “
Tree-based search for stochastic simulation algorithm
,” in
Proceedings of ACM-SAC
(
ACM
,
2012
), pp.
1415
1416
.
17.
V. H.
Thanh
and
R.
Zunino
, “
Adaptive tree-based search for stochastic simulation algorithm
,”
Int. J. Comput. Biol. Drug Des.
7
(
4
),
341
357
(
2014
).
18.
H.
Li
and
L.
Petzold
, “
Logarithmic direct method for discrete stochastic simulation of chemically reacting systems
,” technical report (2006), available online at http://www.engineering.ucsb.edu/~cse/Files/ldm0513.pdf.
19.
J.
Blue
,
I.
Beichl
, and
F.
Sullivan
, “
Faster Monte Carlo simulations
,”
Phys. Rev. E
51
(
2
),
867
868
(
1995
).
20.
S.
Indurkhya
and
J.
Beal
, “
Reaction factoring and bipartite update graphs accelerate the Gillespie algorithm for large-scale biochemical systems
,”
PLoS One
5
(
1
),
8125
(
2010
).
21.
R.
Ramaswamy
,
N.
Gonzlez-Segredo
, and
I. F.
Sbalzarini
, “
A new class of highly efficient exact stochastic simulation algorithms for chemical reaction networks
,”
J. Chem. Phys.
130
(
24
),
244104
(
2009
).
22.
V. H.
Thanh
,
C.
Priami
, and
R.
Zunino
, “
Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays
,”
J. Chem. Phys.
141
(
13
),
134116
(
2014
).
23.
V. H.
Thanh
,
R.
Zunino
, and
C.
Priami
, “
On the rejection-based algorithm for simulation and analysis of large-scale reaction networks
,”
J. Chem. Phys.
142
(
24
),
244106
(
2015
).
24.
V. H.
Thanh
,
R.
Zunino
, and
C.
Priami
, “
Efficient constant-time complexity algorithm for stochastic simulation of large reaction networks
,”
IEEE/ACM Trans. Comput. Biol. Bioinf.
(in press).
25.
V. H.
Thanh
and
C.
Priami
, “
Simulation of biochemical reactions with time-dependent rates by the rejection-based algorithm
,”
J. Chem. Phys.
143
(
5
),
054104
(
2015
).
26.
V. H.
Thanh
, “
On efficient algorithms for stochastic simulation of biochemical reaction systems
,” Ph.D. thesis,
University of Trento
, Italy,
2013
, http://eprints-phd.biblio.unitn.it/1070/.
27.
S.
Mauch
and
M.
Stalzer
, “
Efficient formulations for exact stochastic simulation of chemical systems
,”
IEEE/ACM Trans. Comput. Biol. Bioinf.
8
(
1
),
27
35
(
2011
).
28.
W.
Sandmann
, “
Discrete-time stochastic modeling and simulation of biochemical networks
,”
Comput. Biol. Chem.
32
(
4
),
292
(
2008
).
29.
H.
Li
and
L.
Petzold
, “
Efficient parallelization of the stochastic simulation algorithm for chemically reacting systems on the graphics processing unit
,”
Int. J. High Perform. Comput. Appl.
24
(
2
),
107
116
(
2010
).
30.
V. H.
Thanh
and
R.
Zunino
, “
Parallel stochastic simulation of biochemical reaction systems on multi-core processors
,” in
Proceedings of CSSim
(
Department of Intelligent Systems, FIT BUT
,
2011
), pp.
162
170
.
31.
D.
Gillespie
, “
Approximate accelerated stochastic simulation of chemically reacting
,”
J. Chem. Phys.
115
,
1716
1733
(
2001
).
32.
D.
Gillespie
and
L.
Petzold
, “
Improved leap-size selection for accelerated stochastic simulation
,”
J. Chem. Phys.
119
(
16
),
8229
(
2003
).
33.
Y.
Cao
,
D. T.
Gillespie
, and
L. R.
Petzold
, “
Avoiding negative populations in explicit Poisson tau-leaping
,”
J. Chem. Phys.
123
,
054104
(
2005
).
34.
Y.
Cao
,
D.
Gillespie
, and
L.
Petzold
, “
Efficient step size selection for the tau-leaping simulation method
,”
J. Chem. Phys.
124
(
4
),
44109
(
2006
).
35.
T.
Tian
and
K.
Burrage
, “
Binomial leap methods for simulating stochastic chemical kinetics
,”
J. Chem. Phys.
121
,
10356
(
2004
).
36.
A.
Chatterjee
,
D. G.
Vlachos
, and
M. A.
Katsoulakis
, “
Binomial distribution based τ-leap accelerated stochastic simulation
,”
J. Chem. Phys.
122
,
024112
(
2005
).
37.
D.
Anderson
, “
Incorporating postleap checks in tau-leaping
,”
J. Chem. Phys.
128
(
5
),
054103
(
2008
).
38.
A.
Auger
,
P.
Chatelain
, and
P.
Koumoutsakos
, “
R-leaping: Accelerating the stochastic simulation algorithm by reaction leaps
,”
J. Chem. Phys.
125
(
8
),
84103
(
2006
).
39.
X.
Cai
and
Z.
Xu
, “
K-leap method for accelerating stochastic simulation of coupled chemical reactions
,”
J. Chem. Phys.
126
(
7
),
074102
(
2007
).
40.
U.
Alon
, “
Network motifs: Theory and experimental approaches
,”
Nat. Rev. Genet.
8
,
450
-
461
(
2007
).
41.
C. H.
Seo
,
J.-R.
Kim
,
M.-S.
Kim
, and
K.-H.
Cho
, “
Hub genes with positive feedbacks function as master switches in developmental gene regulatory networks
,”
Bioinformatics
25
(
15
),
1898
1904
(
2009
).
42.
K.
Ehlert
and
L.
Loewe
, “
Lazy Updating of hubs can enable more realistic models by speeding up stochastic simulations
,”
J. Chem. Phys.
141
(
20
),
204109
(
2014
).
43.
D.
Gillespie
, “
A rigorous derivation of the chemical master equation
,”
Physica A
188
(
1–3
),
404
425
(
2007
).
44.
R.
Seger
and
E. G.
Krebs
, “
The MAPK signaling cascade
,”
FASEB J.
9
(
9
),
726
735
(
1995
).
45.
G.
Pearson
,
F.
Robinson
,
T. B.
Gibson
,
B.
Xu
,
M.
Karandikar
,
K.
Berman
, and
M. H.
Cobb
, “
Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions
,”
Endocr. Rev.
22
(
2
),
153
183
(
2001
).
46.
P.
Coulombe
and
S.
Meloche
, “
Atypical mitogen-activated protein kinases: Structure, regulation and functions
,”
Biochim. Biophys. Acta, Mol. Cell Res.
1773
(
8
),
1376
-
1387
(
2007
).
47.
R. J.
Orton
,
O. E.
Sturm
,
V.
Vyshemirsky
,
M.
Calder
,
D. R.
Gilbert
, and
W.
Kolch
, “
Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway
,”
Biochem. J.
392
(
2
),
249
(
2005
).
48.
W.
Kolch
, “
Meaningful relationships: The regulation of the Ras/Raf/MEK/ERK pathway by protein interactions
,”
Biochem. J.
351
(
2
),
289
305
(
2000
).
49.
J. R.
Faeder
 et al, “
Investigation of early events in FceRI-mediated signaling using a detailed mathematical model
,”
J. Immunol.
170
,
3769
-
3781
(
2003
).
50.
L. A.
Chylek
,
D. A.
Holowka
,
B. A.
Baird
, and
W. S.
Hlavacek
, “
An interaction library for the FcϵRI signaling network
,”
Front. Immunol.
5
(
172
),
1664
3224
(
2014
).
51.
Y.
Liu
 et al, “
Single-cell measurements of IgE-mediated FceRI signaling using an integrated microfluidic platform
,”
PLoS One
8
(
3
),
60159
(
2013
).
You do not currently have access to this content.