In the conventional classical density functional theory (DFT) for simple fluids, an ideal gas is usually chosen as the reference system because there is a one-to-one correspondence between the external field and the density distribution function, and the exact intrinsic free-energy functional is available for the ideal gas. In this case, the second-order density functional Taylor series expansion of the excess intrinsic free-energy functional provides the hypernetted-chain (HNC) approximation. Recently, it has been shown that the HNC approximation significantly overestimates the solvation free energy (SFE) for an infinitely dilute Lennard-Jones (LJ) solution, especially when the solute particles are several times larger than the solvent particles [T. Miyata and J. Thapa, Chem. Phys. Lett. 604, 122 (2014)]. In the present study, we propose a reference-modified density functional theory as a systematic approach to improve the SFE functional as well as the pair distribution functions. The second-order density functional Taylor series expansion for the excess part of the intrinsic free-energy functional in which a hard-sphere fluid is introduced as the reference system instead of an ideal gas is applied to the LJ pure and infinitely dilute solution systems and is proved to remarkably improve the drawbacks of the HNC approximation. Furthermore, the third-order density functional expansion approximation in which a factorization approximation is applied to the triplet direct correlation function is examined for the LJ systems. We also show that the third-order contribution can yield further refinements for both the pair distribution function and the excess chemical potential for the pure LJ liquids.

1.
A.
Ben-Naim
,
Curr. Opin. Struct. Biol.
4
,
264
(
1993
).
2.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1989
).
3.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation
(
Academic Press
,
San Diego
,
2001
).
4.
W. L.
Jorgensen
and
C.
Ravimohan
,
J. Chem. Phys.
83
,
3050
(
1985
).
5.
T. P.
Straatsma
and
H. J. C.
Berendsen
,
J. Chem. Phys.
89
,
5876
(
1988
).
6.
M. R.
Shirts
,
J. W.
Pitera
,
W. C.
Swope
, and
V. S.
Pande
,
J. Chem. Phys.
119
,
5740
(
2003
).
7.
M. R.
Shirts
and
V. S.
Pande
,
J. Chem. Phys.
122
,
134508
(
2005
).
8.
N.
Matubayasi
and
M.
Nakahara
,
J. Chem. Phys.
113
,
6070
(
2000
).
9.
N.
Matubayasi
and
M.
Nakahara
,
J. Chem. Phys.
117
,
3605
(
2002
).
10.
N.
Matubayasi
and
M.
Nakahara
,
J. Chem. Phys.
119
,
9686
(
2003
).
11.
H. C.
Andersen
and
D.
Chandler
,
J. Chem. Phys.
57
,
1918
(
1972
).
12.
D.
Chandler
and
H. C.
Andersen
,
J. Chem. Phys.
57
,
1930
(
1972
).
13.
F.
Hirata
,
J. Chem. Phys.
77
,
509
(
1982
).
14.
B. M.
Pettitt
,
J. Chem. Phys.
77
,
1451
(
1982
).
15.
S. J.
Singer
and
D.
Chandler
,
Mol. Phys.
55
,
621
(
1985
).
16.
A.
Kovalenko
and
F.
Hirata
,
J. Chem. Phys.
110
,
10095
(
1999
).
17.
G. N.
Chuev
,
M. V.
Fedorov
, and
J.
Crain
,
Chem. Phys. Lett.
448
,
198
(
2007
).
18.
E. L.
Ratkova
,
G. N.
Chuev
,
V. P.
Sergiievskyi
, and
M. V.
Fedorov
,
J. Phys. Chem. B
114
,
12068
(
2010
).
19.
J.-F.
Truchon
,
B. M.
Pettitt
, and
P.
Labute
,
J. Chem. Theory Comput.
10
,
934
(
2014
).
20.
V. P.
Sergiievskyi
,
G.
Jeanmairet
,
M.
Levesque
, and
D.
Borgis
,
J. Phys. Chem. Lett.
5
,
1935
(
2014
).
21.
Y.
Liu
,
S.
Zhao
, and
J.
Wu
,
J. Chem. Theory Comput.
9
,
1896
(
2013
).
22.
F.
Hirata
and
P. J.
Rossky
,
Chem. Phys. Lett.
83
,
329
(
1981
).
23.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 2nd ed. (
Academic Press
,
London
,
1986
).
24.
S.
Ten-no
,
J. Chem. Phys.
115
,
3724
(
2001
).
25.
K.
Sato
,
H.
Chuman
, and
S.
Ten-no
,
J. Phys. Chem. B
109
,
17290
(
2005
).
26.
A.
Kovalenko
and
F.
Hirata
,
J. Chem. Phys.
113
,
2793
(
2000
).
27.
T.
Miyata
and
J.
Thapa
,
Chem. Phys. Lett.
604
,
122
(
2014
).
28.
T.
Sumi
,
A.
Mitsutake
, and
Y.
Maruyama
,
J. Comput. Chem.
36
,
1359
(
2015
).
29.
T.
Sumi
,
A.
Mitsutake
, and
Y.
Maruyama
,
J. Comput. Chem.
36
,
2009
(
2015
).
30.
Y.
Rosenfeld
and
N. W.
Ashcroft
,
Phys. Rev. A
20
,
1208
(
1979
).
31.
D.
Henderson
,
Fundamentals of Inhomogeneous Fluids
(
Marcel Dekker
,
New York
,
1992
).
32.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
1989
).
33.
L. L.
Lee
,
J. Chem. Phys.
60
,
1197
(
1974
).
34.
W. A.
Curtin
,
J. Chem. Phys.
88
,
7050
(
1988
).
35.
36.
R.
Roth
,
R.
Evans
,
A.
Lang
, and
G.
Kahl
,
J. Phys.: Condens. Matter
14
,
12063
(
2002
).
37.
Y.-X.
Yu
and
J.
Wu
,
J. Chem. Phys.
117
,
10156
(
2002
).
38.
T.
Sumi
and
H.
Sekino
,
J. Phys. Soc. Jpn.
77
,
034605
(
2008
).
39.
J. K.
Percus
,
Phys. Rev. Lett.
8
,
462
(
1962
).
40.
Y.
Rosenfeld
,
J. Chem. Phys.
98
,
8126
(
1993
).
41.
H.
Iyetomi
and
S.
Ichimaru
,
Phys. Rev. A
25
,
2434
(
1982
).
42.
H.
Iyetomi
and
S.
Ichimaru
,
Phys. Rev. A
27
,
3241
(
1983
).
43.
J. L.
Barrat
,
J. P.
Hansen
, and
G.
Pastore
,
Phys. Rev. Lett.
58
,
2075
(
1987
).
44.
J. L.
Barrat
,
J. P.
Hansen
, and
G.
Pastore
,
Mol. Phys.
63
,
747
(
1988
).
45.
L. L.
Lee
,
J. Chem. Phys.
135
,
204706
(
2011
).
46.
47.
S.
Ichimaru
,
Rev. Mod. Phys.
54
,
1017
(
1982
).
48.
Y.
Rosenfeld
,
D.
Levesque
, and
J. J.
Weis
,
J. Chem. Phys.
92
,
6818
(
1990
).
49.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
50.
L.
Reatto
,
D.
Levesque
, and
J.
Weis
,
Phys. Rev. A
33
,
3451
(
1986
).
51.
K.
Koga
,
Phys. Chem. Chem. Phys.
13
,
19749
(
2011
).
52.
J. L.
Lebowitz
and
J. K.
Percus
,
J. Math. Phys.
4
,
116
(
1963
).
53.
J. A.
Barker
and
J. J.
Monaghan
,
J. Chem. Phys.
36
,
2564
(
1962
).
You do not currently have access to this content.