Due to the lack of treatment of long-range dispersion energies, density functional theory with local and semilocal approximations of exchange-correlation energy is known to fail in describing van der Waals complexes, including polymer crystals. This limitation can be overcome by using a different class of functionals, called van der Waals density functional (vdW-DF), originally developed by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)]. In this work, we performed a systematic study of structural properties of polymeric crystals using the original vdW-DF functional by Dion et al. and its variants and refinements. Our study shows that this class of functional outperforms the conventional LDA or PBE functionals and gives results with similar accuracy to that of empirical dispersion-corrected schemes such as DFT-D. This study suggests the use of vdW-DF2 functional — a revised version of vdW-DF functional — to obtain a high-fidelity prediction of structural and other properties of polymeric materials.

1.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
2.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
3.
K. T.
Tang
and
J. P.
Toennies
,
J. Chem. Phys.
66
,
1496
(
1977
).
4.
K. T.
Tang
and
J. P.
Toennies
,
J. Chem. Phys.
68
,
5501
(
1978
).
5.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
6.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H. J.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
7.
A.
Tkatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
,
073005
(
2009
).
8.
M.
Fuchs
and
X.
Gonze
,
Phys. Rev. B
65
,
235109
(
2002
).
9.
D.
Lu
,
Y.
Li
,
D.
Rocca
, and
G.
Galli
,
Phys. Rev. Lett.
102
,
206411
(
2009
).
10.
H.-V.
Nguyen
and
G.
Galli
,
J. Chem. Phys.
132
,
044109
(
2010
).
11.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
92
,
246401
(
2004
).
12.
D. C.
Langreth
,
B. I.
Lundqvist
,
S. D.
Chakarova-Käck
,
V. R.
Cooper
,
M.
Dion
,
P.
Hyldgaard
,
A.
Kelkkanen
,
J.
Kleis
,
L.
Kong
,
S.
Li
,
P. G.
Moses
,
E.
Murray
,
A.
Puzder
,
H.
Rydberg
,
E.
Schröder
, and
T.
Thonhauser
,
J. Phys.: Condens. Matter
21
,
084203
(
2009
).
13.
Y.
Zhang
and
W.
Yang
,
Phys. Rev. Lett.
80
,
890
(
1998
).
14.
V. R.
Cooper
,
Phys. Rev. B
81
,
161104(R)
(
2010
).
15.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
,
J. Phys.: Condens. Matter
22
,
022201
(
2010
).
16.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
,
Phys. Rev. B
83
,
195131
(
2011
).
17.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
18.
A. D.
Becke
,
J. Chem. Phys.
85
,
7184
(
1986
).
19.
K.
Lee
,
E. D.
Murray
,
L.
Kong
,
B. I.
Lundqvist
, and
D. C.
Langreth
,
Phys. Rev. B
82
,
081101
(
2010
).
20.
E. D.
Murray
,
K.
Lee
, and
D. C.
Langreth
,
J. Chem. Theory Comput.
5
,
2754
(
2009
).
21.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
33
,
8800
(
1986
).
22.
I.
Hamada
,
Phys. Rev. B
89
,
121103(R)
(
2014
).
23.
O. A.
Vydrov
and
T.
Van Voorhis
,
J. Chem. Phys.
133
,
244103
(
2010
).
24.
R.
Sabatini
,
T.
Gorni
, and
S.
de Gironcoli
,
Phys. Rev. B
87
,
041108(R)
(
2013
).
25.
G.
Román-Pérez
and
J. M.
Soler
,
Phys. Rev. Lett.
103
,
096102
(
2009
).
26.
C.-S.
Liu
,
G.
Pilania
,
C.
Wang
, and
R.
Ramprasad
,
J. Phys. Chem. A
116
,
9347
(
2012
).
27.
K.
Berland
,
V. R.
Cooper
,
K.
Lee
,
E.
Schröder
,
T.
Thonhauser
,
P.
Hyldgaard
, and
B. I.
Lundqvist
,
Rep. Prog. Phys.
78
,
066501
(
2015
).
28.
J.
Kleis
,
B. I.
Lundqvist
,
D. C.
Langreth
, and
E.
Schröder
,
Phys. Rev. B
76
,
100201
(
2007
).
29.
A.
Mannodi-Kanakkithodi
,
G.
Pilania
,
D. H.
Tran
,
T.
Lookman
, and
R.
Ramprasad
,
Sci. Rep.
6
,
20952
(
2016
).
30.
D. H.
Tran
,
A.
Mannodi-Kanakkithodi
,
C.
Kim
,
V.
Sharma
,
G.
Pilania
, and
R.
Ramprasad
,
Sci. Data
3
,
160012
(
2016
).
31.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
,
J. Phys.: Condens. Matter
39
,
395502
(
2009
).
32.
T.
Thonhauser
,
V. R.
Cooper
,
S.
Li
,
A.
Puzder
,
P.
Hyldgaard
, and
D. C.
Langreth
,
Phys. Rev. B
76
,
125112
(
2007
).
33.
R.
Sabatini
,
E.
Küçükbenli
,
B.
Kolb
,
T.
Thonhauser
, and
S.
de Gironcoli
,
J. Phys.: Condens. Matter
24
,
424209
(
2012
).
34.
K. F.
Garrity
,
J. W.
Bennett
,
K. M.
Rabe
, and
D.
Vanderbilt
,
Comput. Mater. Sci.
81
,
446
(
2014
).
35.

The calculation of stress tensor is needed in geometry optimization and complications due to Pulay stresses in a plane-wave implementation may arise. However, this problem can be practically eliminated by using sufficiently high plane-wave cutoffs as we used in our calculations.

36.
F. W.
Billmayer
,
J. Appl. Phys.
28
,
1114
(
1957
).
37.
K.
Berland
,
O.
Borck
, and
P.
Hyldgaard
,
Comput. Phys. Commun.
182
,
1800
(
2011
).
38.
J.
Wu
and
F.
Gygi
,
J. Chem. Phys.
136
,
224107
(
2012
).
39.
A. C. W.
Heseltine
,
D. W.
Elliot
, and
O. B.
Wilson
,
J. Chem. Phys.
40
,
2584
(
1964
).
40.
Y.
Zhao
,
J.
Wang
,
Q.
Cui
,
Z.
Liu
,
M.
Yang
, and
J.
Shen
,
Polymer
31
,
1425
(
1990
).
41.
Y.
Chatani
,
K.
Suehiro
,
Y.
Okita
,
H.
Tadokoro
, and
K.
Chujo
,
Makromol. Chem.
113
,
215
(
1968
).
42.
R. L.
Miller
, in
Polymer Handbook. Part VI: Solid State Properties
, 4th revised ed., edited by
J.
Brandrup
,
E. H.
Immergut
,
E. A.
Grulke
,
A.
Abe
, and
D. R.
Bloch
(
Wiley
,
New York
,
2005
).
43.
G.
Carazzolo
and
M.
Mammi
,
J. Polym. Sci., Part A: Gen. Pap.
1
,
965
(
1963
).
44.
C.
Nakafuku
and
T.
Takemura
,
Jpn. J. Appl. Phys.
14
,
599
(
1975
).
45.
G.
Avitabile
,
R.
Napolitano
,
B.
Pirozzi
,
K. D.
Rouse
,
M. W. J.
Thomas
, and
B. T. M.
Willis
,
J. Polym. Sci., Polym. Lett. Ed.
13
,
351
(
1975
).
You do not currently have access to this content.