Methylamine is an abundant amine compound detected in the atmosphere which can affect the nature of atmospheric aerosol surfaces, changing their chemical and optical properties. Molecular dynamics simulation results show that methylamine accommodation on water is close to unity with the hydrophilic head group solvated in the interfacial environment and the methyl group pointing into the air phase. A detailed analysis of the hydrogen bond network indicates stronger hydrogen bonds between water and the primary amine group at the interface, suggesting that atmospheric trace gases will likely react with the methyl group instead of the solvated amine site. These findings suggest new chemical pathways for methylamine acting on atmospheric aerosols in which the methyl group is the site of orientation specific chemistry involving its conversion into a carbonyl site providing hydrophilic groups for uptake of additional water. This conversion may explain the tendency of aged organic aerosols to form cloud condensation nuclei. At the same time, formation of NH2 radical and formaldehyde is suggested to be a new source for NH2 radicals at aerosol surfaces, other than by reaction of absorbed NH3. The results have general implications for the chemistry of other amphiphilic organics, amines in particular, at the surface of atmospherically relevant aerosols.

1.
X.
Ge
,
A. S.
Wexler
, and
S. L.
Clegg
, “
Atmospheric amines. Part I. A review
,”
Atmos. Environ.
45
,
524
546
(
2011
).
2.
K.
Sellegri
,
B.
Umann
,
M.
Hanke
, and
F.
Arnold
, “
Deployment of a ground-based cims apparatus for the detection of organic gases in the boreal forest during the quest campaign
,”
Atmos. Chem. Phys.
5
,
357
372
(
2005
).
3.
X.
Ge
,
A. S.
Wexler
, and
S. L.
Clegg
, “
Atmospheric amines. Part II. Thermodynamic properties and gas/particle partitioning
,”
Atmos. Environ.
45
,
561
577
(
2011
).
4.
C.
Qiu
and
R.
Zhang
, “
Multiphase chemistry of atmospheric amines
,”
Phys. Chem. Chem. Phys.
15
,
5738
5752
(
2013
).
5.
D.
Lee
and
A. S.
Wexler
, “
Atmospheric amines. Part III. Photochemistry and toxicity
,”
Atmos. Environ.
71
,
95
103
(
2013
).
6.
A.
Laskin
,
J.
Laskin
, and
S. A.
Nizkorodov
, “
Chemistry of atmospheric brown carbon
,”
Chem. Rev.
115
,
4335
4382
(
2015
).
7.
V.
Loukonen
,
T.
Kurten
,
I. K.
Ortega
,
H.
Vehkamaki
,
A.
Padua
,
K.
Sellegri
, and
M.
Kulmala
, “
Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water-a computational study
,”
Atmos. Chem. Phys.
10
,
4961
4974
(
2010
).
8.
M.
Hallquist
,
J. C.
Wenger
,
U.
Baltensperger
,
Y.
Rudich
,
D.
Simpson
,
M.
Claeys
,
J.
Dommen
,
N. M.
Donahue
,
C.
George
,
A. H.
Goldstein
,
J. F.
Hamilton
,
H.
Herrmann
,
T.
Hoffmann
,
Y.
Linuma
,
M.
Jang
,
M. E.
Jenkin
,
J. L.
Jimenez
,
A.
Kiendler-Scharr
,
W.
Maenhaut
,
G.
McFiggans
,
Th. F.
Mentel
,
A.
Monod
,
A. S. H.
Prevot
,
J. H.
Seinfeld
,
J. D.
Surratt
,
R.
Szmigielski
, and
J.
Wildt
, “
The formation, properties and impact of secondary organic aerosol: Current and emerging issues
,”
Atmos. Chem. Phys.
9
,
5155
5236
(
2009
).
9.
C.
Leng
,
J. D.
Kish
,
J. E.
Roberts
,
I.
Dwebi
,
N.
Chon
, and
Y.
Liu
, “
Temperature-dependent Henry’s law constants of atmospheric amines
,”
J. Phys. Chem. A
119
,
8884
8891
(
2015
).
10.
G. W.
Schade
and
P. J.
Crutzen
, “
Emission of aliphatic amines from animal husbandry and their reactions: Potential source of N2O and HCN
,”
J. Atmos. Chem.
22
,
319
346
(
1995
).
11.
H.
Chen
,
M. E.
Varner
,
R. B.
Gerber
, and
B. J.
Finlayson-Pitts
, “
Reactions of methanesulfonic acid with amines and ammonia as a source of new particles in air
,”
J. Phys. Chem. B
120
,
1526
(
2016
).
12.
M. L.
Dawson
,
M. E.
Varner
,
V.
Perraud
,
M. J.
Ezell
,
B. R.
Gerber
, and
B. J.
Finlayson-Pitts
, “
Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
18719
18724
(
2012
).
13.
J.
Kua
,
H. E.
Krizner
, and
D. O. D.
Haan
, “
Thermodynamics and kinetics of imidazole formation from glyoxal, methylamine, and formaldehyde: A computational study
,”
J. Phys. Chem. A
115
,
1667
1675
(
2011
).
14.
C.
George
,
M.
Ammann
,
B.
D’Anna
,
D. J.
Donaldson
, and
S. A.
Nizkorodov
, “
Heterogeneous photochemistry in the atmosphere
,”
Chem. Rev.
115
,
4218
4258
(
2015
).
15.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Dynamics
(
Academic Press
,
2002
).
16.
R.
Vacha
,
P.
Jungwirth
,
J.
Chen
, and
K. T.
Valsaraj
, “
Adsorption of polycyclic aromatic hydrocarbons at the air–water interface: Molecular dynamics simulations and experimental atmospheric observations
,”
Phys. Chem. Chem. Phys.
8
,
4461
(
2006
).
17.
R.
Vacha
,
L.
Cwiklik
,
J.
Rezac
,
P.
Hobza
,
P.
Jungwirth
,
K.
Valsaraj
,
S.
Bahr
, and
V.
Kempter
, “
Adsorption of aromatic hydrocarbons and ozone at environmental aqueous surfaces
,”
J. Phys. Chem. A
112
,
4942
(
2008
).
18.
D.
Heger
,
D.
Nachtigallova
,
F.
Surman
,
J.
Krausko
,
B.
Magyarova
,
M.
Brumovsky
,
M.
Rubes
,
I.
Gladich
, and
P.
Klan
, “
Self-organization of 1-methylnaphthalene on the surface of artificial snow grains: A combined experimental-computational approach
,”
J. Phys. Chem. A
115
,
11412
(
2011
).
19.
T. P.
Liyana-Arachchi
,
K. T.
Valsaraj
, and
F. R.
Hung
, “
Molecular simulation study of the adsorption of naphthalene and ozone on atmospheric air/ice interfaces
,”
J. Phys. Chem. A
115
,
9226
(
2011
).
20.
T. P.
Liyana-Arachchi
,
K. T.
Valsaraj
, and
F. R.
Hung
, “
Adsorption of naphthalene and ozone on atmospheric air/ice interfaces coated with surfactants: A molecular simulation study
,”
J. Phys. Chem. A
116
,
2519
(
2012
).
21.
R.
Kania
,
J. K.
Malongwe
,
D.
Nachtigallova
,
J.
Krausko
,
I.
Gladich
,
M.
Roeselova
,
D.
Heger
, and
P.
Klan
, “
Spectroscopic properties of benzene at the air–ice interface: A combined experimental–computational approach
,”
J. Phys. Chem. A
118
,
7535
7547
(
2014
).
22.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A. Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
,
1157
(
2004
).
23.
C. I.
Bayly
,
P.
Cieplak
,
W. D.
Cornell
, and
P. A.
Kollman
, “
A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model
,”
J. Phys. Chem.
97
,
10269
(
1993
).
24.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09, Revision E.01, Gaussian Inc., Wallingford, CT, 2009.
25.
J.
Wang
,
W.
Wang
,
P. A.
Kollman
, and
D. A.
Case
, “
Automatic atom type and bond type perception in molecular mechanical calculations
,”
J. Mol. Graphics Modell.
25
,
247
260
(
2006
).
26.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
,
926
935
(
1983
).
27.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
28.
S. W. A.
Rick
, “
Reoptimization of the five-site water potential (TIP5P) for use with Ewald sums
,”
J. Chem. Phys.
120
,
6085
(
2004
).
29.
I.
Gladich
,
A.
Rodriguez
,
R. P. H.
Enriquez
,
F.
Guida
,
F.
Berti
, and
A.
Laio
, “
Designing high-affinity peptides for organic molecules by explicit solvent molecular dynamics
,”
J. Phys. Chem. B
119
,
12963
12969
(
2015
).
30.
J. L. F.
Abascal
and
C.
Vega
, “
Dipole-quadrupole force ratios determine the ability of potential models to describe the phase diagram of water
,”
Phys. Rev. Lett.
98
,
237801
(
2007
).
31.
I.
Gladich
and
M.
Roeselova
, “
Comparison of selected polarizable and nonpolarizable water models in molecular dynamics simulations of ice Ih
,”
Phys. Chem. Chem. Phys.
14
,
11371
11385
(
2012
).
32.
I.
Gladich
,
A.
Oswald
,
N.
Bowens
,
S.
Naatz
,
P.
Rowe
,
M.
Roeselova
, and
S.
Neshyba
, “
Mechanism of anisotropic surface self-diffusivity at the prismatic ice-vapor interface
,”
Phys. Chem. Chem. Phys.
17
,
22947
22958
(
2015
).
33.
C.
Vega
,
E.
Sanz
, and
J. L. F.
Abascal
, “
The melting temperature of the most common models of water
,”
J. Chem. Phys.
122
,
114507
(
2005
).
34.
R. G.
Fernandez
,
J. L. F.
Abascal
, and
C.
Vega
, “
The melting point of ice Ih for common water models calculated from direct coexistence of the solidliquid interface
,”
J. Chem. Phys.
124
,
144506
(
2006
).
35.
G. C.
Picasso
,
D.
Malaspina
,
M. A.
Carignano
, and
I.
Szleifer
, “
Cooperative dynamic and diffusion behavior above and below the dynamical crossover of supercooled water
,”
J. Chem. Phys.
139
,
044509
(
2013
).
36.
D. J.
Tobias
,
A. C.
Stern
,
M. D.
Baer
,
Y.
Levin
, and
C. J.
Mundy
, “
Simulation and theory of ions at atmospherically relevant aqueous liquid-air interfaces
,”
Annu. Rev. Phys. Chem.
64
,
339
359
(
2013
).
37.
I.
Gladich
,
P.
Shepson
,
I.
Szleifer
, and
M.
Carignano
, “
Halide and sodium ion parameters for modeling aqueous solutions in TIP5P-Ew water
,”
Chem. Phys. Lett.
489
,
113
117
(
2010
).
38.
I.
Gladich
,
A.
Habartova
, and
M.
Roeselova
, “
Adsorption, mobility, and self-association of naphthalene and 1-methylnaphthalene at the water-vapor interface
,”
J. Phys. Chem. A
118
,
1052
1066
(
2014
).
39.
D. A.
McQuarrie
and
J. S.
Simon
,
Physical Chemistry: A Molecular Approach
(
University Science Books
,
Herndon, VA
,
1997
).
40.
P.
Atkins
and
J.
DePaula
,
Physical Chemistry
(
Oxford University Press
,
UK
,
2010
).
41.
R.
Sander
, “
Compilation of Henry’s law constants (version 4.0) for water as solvent
,”
Atmos. Chem. Phys.
15
,
4399
4981
(
2015
).
42.
M.
Roeselova
,
J.
Vieceli
,
L. X.
Dang
,
B. C.
Garrett
, and
D. J.
Tobias
, “
Hydroxyl radical at the airwater interface
,”
J. Am. Chem. Soc.
126
,
16308
16309
(
2004
).
43.
J.
Vieceli
,
M.
Roeselova
,
N.
Potter
,
L. X.
Dang
,
B. C.
Garrett
, and
D. J.
Tobias
, “
Molecular dynamics simulations of atmospheric oxidants at the airwater interface: Solvation and accommodation of OH and O3
,”
J. Phys. Chem. B
109
,
15876
15892
(
2005
).
44.
J.
Julin
,
P. M.
Winkler
,
N. M.
Donahue
,
P. E.
Wagner
, and
I.
Riipinen
, “
Near-unity mass accommodation coefficient of organic molecules of varying structure
,”
Environ. Sci. Technol.
48
,
12083
12089
(
2014
).
45.
J. A.
Lemkul
and
D. R.
Bevan
, “
Assessing the stability of Alzheimer’s amyloid protofibrils using molecular dynamics
,”
J. Phys. Chem. B
114
,
1652
1660
(
2010
).
46.
J.
Hub
,
B. L.
de Groot
, and
D.
van Der Spoel
, “
g-wham—A free weighted histogram analysis implementation including robust error and autocorrelation estimates
,”
J. Chem. Theory Comput.
6
,
3713
(
2010
).
47.
O.
Engin
,
A.
Villa
,
M.
Sayar
, and
B.
Hess
, “
Driving forces for adsorption of amphiphilic peptides to the airwater interface
,”
J. Phys. Chem. B
114
,
11093
(
2010
).
48.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
, “
The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method
,”
J. Comput. Chem.
13
,
1011
1021
(
1992
).
49.
S.
Kumar
,
J. M.
Rosenberg
,
D.
Bouzida
,
R. H.
Swendsen
, and
P. A.
Kollman
, “
Multidimensional free-energy calculations using the weighted histogram analysis method
,”
J. Comput. Chem.
16
,
1339
1350
(
1995
).
50.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
51.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
52.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
Vangunsteren
,
A.
Dinola
, and
J. R.
Haak
, “
Molecular-dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
53.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T. D. H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
54.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
,
1463
1472
(
1997
).
55.
S.
Miyamoto
and
P. A.
Kollman
, “
Settle: An analytical version of the shake and rattle algorithm for rigid water models
,”
J. Comput. Chem.
13
,
952
962
(
1992
).
56.
D. J.
Donaldson
and
K. T.
Valsaraj
, “
Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: A critical review
,”
Environ. Sci. Technol.
44
,
865
(
2010
).
57.
C.
Vega
,
J. L. F.
Abascal
,
M. M.
Conde
, and
J. L.
Aragones
, “
What ice can teach us about water interactions: A critical comparison of the performance of different water models
,”
Faraday Discuss.
141
,
251
(
2009
).
58.
C.
Vega
and
J. L. F.
Abascal
, “
Simulating water with rigid non-polarizable models: A general perspective
,”
Phys. Chem. Chem. Phys.
13
,
19663
19688
(
2011
).
59.
M.
Shiraiwa
,
A.
Zuend
,
A.
Bertram
, and
J. H.
Seinfeld
, “
Gas-particle partitioning of atmospheric aerosols: Interplay of physical state, non-ideal mixing and morphology
,”
Phys. Chem. Chem. Phys.
15
,
11441
11453
(
2013
).
60.
R.
Kumar
,
M. C.
Barth
,
S.
Madronich
,
M.
Naja
,
G. R.
Carmichael
,
G. G.
Pfister
,
C.
Knote
,
G. P.
Brasseur
,
N.
Ojha
, and
T.
Sarangi
, “
Effects of dust aerosols on tropospheric chemistry during a typical pre-monsoon season dust storm in northern India
,”
Atmos. Chem. Phys.
14
,
6813
6834
(
2014
).
61.
B.
Ervens
, “
Modeling the processing of aerosol and trace gases in clouds and fogs
,”
Chem. Rev.
115
,
4157
4198
(
2015
).
62.
A.
Luzar
and
D.
Chandler
, “
Effect of environment on hydrogen bond dynamics in liquid water
,”
Phys. Rev. Lett.
76
,
928
931
(
1996
).
63.
O.
Markovitch
and
N.
Agmon
, “
Reversible geminate recombination of hydrogen-bonded water molecule pair
,”
J. Chem. Phys.
129
,
084505
(
2008
).
64.
S.-S.
Lv
,
Y.-R.
Liu
,
T.
Huang
,
Y.-J.
Feng
,
S.
Jiang
, and
W.
Huang
, “
Stability of hydrated methylamine: Structural characteristics and H2N⋯ H–O hydrogen bonds
,”
J. Phys. Chem. A
119
,
3770
3779
(
2015
).
65.
P.
Jedlovszky
,
M.
Predota
, and
I.
Nezbeda
, “
Hydration of apolar solutes of varying size: A systematic study
,”
Mol. Phys.
104
,
2465
2476
(
2006
).
66.
R. C.
Remsing
,
M. D.
Baer
,
G. K.
Schenter
,
C. J.
Mundy
, and
J. D.
Weeks
, “
The role of broken symmetry in solvation of a spherical cavity in classical and quantum water models
,”
J. Phys. Chem. Lett.
5
,
2767
2774
(
2014
).
67.
M. D.
Baer
,
D. J.
Tobias
, and
C. J.
Mundy
, “
Investigation of interfacial and bulk dissociation of HBr, HCl, and HNO3 using density functional theory-based molecular dynamics simulations
,”
J. Phys. Chem. C
118
,
29412
29420
(
2014
).
68.
J.
Zhong
,
Y.
Zhao
,
L.
Li
,
H.
Li
,
J. S.
Francisco
, and
X. C.
Zeng
, “
Interaction of the NH2 radical with the surface of a water droplet
,”
J. Am. Chem. Soc.
137
,
12070
12078
(
2015
).
69.
D. J.
Donaldson
, “
Adsorption of atmospheric gases at the airwater interface. I. NH3
,”
J. Phys. Chem. A
103
,
62
70
(
1999
).
70.
M. A.
Carignano
,
M. M.
Jacob
, and
E. E.
Avila
, “
On the uptake of ammonia by the water-vapor interface
,”
J. Phys. Chem. A
112
,
3676
3679
(
2008
).
71.
C. J.
Nielsen
,
H.
Herrmann
, and
C.
Weller
, “
Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS)
,”
Chem. Soc. Rev.
41
,
6684
6704
(
2012
).
72.
S. M.
Murphy
,
A.
Sorooshian
,
J. H.
Kroll
,
N. L.
Ng
,
P.
Chhabra
,
C.
Tong
,
J.
Surratt
,
E.
Knipping
,
R. C.
Flagan
, and
J. H.
Seinfeld
, “
Secondary aerosol formation from atmospheric reactions of aliphatic amines
,”
Atmos. Chem. Phys.
7
,
2313
2337
(
2007
).
73.
G. B.
Ellison
,
A. F.
Tuck
, and
V.
Vaida
, “
Atmospheric processing of organic aerosols
,”
J. Geophys. Res.: Atmos.
104
,
11633
11641
, doi:10.1029/1999JD900073 (
1999
).
74.
D. J.
Donaldson
and
V.
Vaida
, “
The influence of organic films at the air-aqueous boundary on atmospheric processes
,”
Chem. Rev.
106
,
1445
1461
(
2006
).
75.
Y.
Paz
,
S.
Trakhtenberg
, and
R.
Naaman
, “
Reaction between O(3P) and organized organic thin films
,”
J. Phys. Chem.
98
,
13517
13523
(
1994
).
76.
A. K.
Bertram
,
A. V.
Ivanov
,
M.
Hunter
,
L. T.
Molina
, and
M. J.
Molina
, “
The reaction probability of OH on organic surfaces of tropospheric interest
,”
J. Phys. Chem. A
105
,
9415
9421
(
2001
).
77.
M. T. C.
Martins-Costa
,
J. M.
Anglada
,
J. S.
Francisco
, and
M. F.
Ruiz-Lopez
, “
Reactivity of volatile organic compounds at the surface of a water droplet
,”
J. Am. Chem. Soc.
134
,
11821
11827
(
2012
).
78.
B. J.
Finlayson-Pitts
and
J. N.
Pitts
, Jr.
,
Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications
(
Academic Press
,
1999
).
79.
J. H.
Seinfeld
and
S. N.
Pandis
,
Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
(
John Wiley & Sons
,
2012
).
80.
A.
Galano
and
J. R.
Alvarez-Idaboy
, “
Branching ratios of aliphatic amines + OH gas-phase reactions: A variational transition-state theory study
,”
J. Chem. Theory Comput.
4
,
322
327
(
2008
).
81.
V.
Vaida
,
A.
Tuck
, and
G.
Ellison
, “
Optical and chemical properties of atmospheric organic aerosols
,”
Phys. Chem. Earth
25
,
195
198
(
2000
).
82.
M. K.
Louie
,
J. S.
Francisco
,
M.
Verdicchio
,
S. J.
Klippenstein
, and
A.
Sinha
, “
Dimethylamine addition to formaldehyde catalyzed by a single water molecule: A facile route for atmospheric carbinolamine formation and potential promoter of aerosol growth
,”
J. Phys. Chem. A
120
,
1358
(
2016
).
83.
A. C.
Davis
and
J. S.
Francisco
, “
Reactivity trends within alkoxy radical reactions responsible for chain branching
,”
J. Am. Chem. Soc.
133
,
18208
18219
(
2011
).
84.
See supplementary material at http://dx.doi.org/10.1063/1.4950951 for description of mass accommodation coefficient and water model parameters.

Supplementary Material

You do not currently have access to this content.