In this work, two Polynomial Chaos (PC) surrogates were generated to reproduce Monte Carlo (MC) molecular simulation results of the canonical (single-phase) and the NVT-Gibbs (two-phase) ensembles for a system of normalized structureless Lennard-Jones (LJ) particles. The main advantage of such surrogates, once generated, is the capability of accurately computing the needed thermodynamic quantities in a few seconds, thus efficiently replacing the computationally expensive MC molecular simulations. Benefiting from the tremendous computational time reduction, the PC surrogates were used to conduct large-scale optimization in order to propose single-site LJ models for several simple molecules. Experimental data, a set of supercritical isotherms, and part of the two-phase envelope, of several pure components were used for tuning the LJ parameters (ε, σ). Based on the conducted optimization, excellent fit was obtained for different noble gases (Ar, Kr, and Xe) and other small molecules (CH4, N2, and CO). On the other hand, due to the simplicity of the LJ model used, dramatic deviations between simulation and experimental data were observed, especially in the two-phase region, for more complex molecules such as CO2 and C2 H6.

1.
A.
Firoozabadi
,
Thermodynamics of Hydrocarbon Reservoirs
(
McGraw Hill Professional
,
USA
,
1999
).
2.
A.
Firoozabadi
,
Thermodynamics and Applications of Hydrocarbons Energy Production
(
McGraw Hill Professional
,
USA
,
2015
).
3.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
USA
,
1989
).
4.
R. L.
Rowley
,
Statistical Mechanics for Thermophysical Property Calculations
(
Prentice Hall
,
USA
,
1994
).
5.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
California, USA
,
2000
).
6.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
San Diego, CA
,
2001
).
7.
P.
Ungerer
,
V.
Lachet
, and
B.
Tavitian
, “
Applications of molecular simulation in oil and gas production and processing
,”
Oil Gas Sci. Technol.
61
,
387
403
(
2006
).
8.
P.
Ungerer
,
C.
Nieto-Draghi
,
V.
Lachet
,
A.
Wender
,
A.
Lelladi
,
A.
Boutin
,
B.
Rousseau
, and
A. H.
Fuchs
, “
Molecular simulation applied to fluid properties in the oil and gas industry
,”
Mol. Simul.
33
,
287
304
(
2007
).
9.
G. M.
Torrie
and
J. P.
Valleau
, “
Monte Carlo study of a phase-separating liquid mixture by umbrella sampling
,”
J. Chem. Phys.
66
,
1402
1408
(
1977
).
10.
G. M.
Torrie
and
J. P.
Valleau
, “
Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
,”
J. Comput. Phys.
23
,
187
199
(
1977
).
11.
J. P.
Valleau
, “
The Coulombic phase transition: Density-scaling Monte Carlo
,”
J. Chem. Phys.
95
,
584
589
(
1991
).
12.
J. P.
Valleau
, “
Density-scaling: A new Monte Carlo technique in statistical mechanics
,”
J. Comput. Phys.
96
,
193
216
(
1991
).
13.
J. P.
Valleau
, “
Density-scaling Monte Carlo study of subcritical Lennard-Jonesium
,”
J. Chem. Phys.
99
,
4718
4728
(
1993
).
14.
K.
Kiyohara
, “
Thermodynamic scaling Gibbs ensemble Monte Carlo: A new method for determination of phase coexistence properties of fluids
,”
Mol. Phys.
89
,
965
974
(
1996
).
15.
J. P.
Valleau
, “
Temperature-and-density-scaling Monte Carlo: Methodology and the canonical thermodynamics of Lennard-Jonesium
,”
Mol. Simul.
31
,
223
253
(
2005
).
16.
J. P.
Valleau
, “
Temperature-and-density-scaling Monte Carlo: Isothermal-isobaric thermodynamics of Lennard-Jonesium
,”
Mol. Simul.
31
,
255
275
(
2005
).
17.
J. S.
Wang
and
R.
Swendsen
, “
Non-universal critical dynamics in Monte Carlo simulations
,”
Phys. Rev. Lett.
58
,
86
88
(
1987
).
18.
A. M.
Ferrenberg
and
R. H.
Swendsen
, “
New Monte Carlo technique for studying phase transitions
,”
Phys. Rev. Lett.
61
,
2635
2638
(
1988
).
19.
A.
Ferrenberg
and
R.
Swendsen
, “
New Monte Carlo technique for studying phase transitions
,”
Phys. Rev. Lett.
63
,
1658
(
1989
).
20.
A.
Lyubartsev
,
A.
Martsinovski
,
S.
Shevkunov
, and
P.
Vorontsov-Velyaminov
, “
New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles
,”
J. Chem. Phys.
96
,
1776
1785
(
1992
).
21.
F. A.
Escobedo
and
J. J.
Pablo
, “
Expanded grand canonical and Gibbs ensemble Monte Carlo simulation of polymers
,”
J. Chem. Phys.
105
,
4391
4394
(
1996
).
22.
E.
Marinari
and
G.
Parisi
, “
Simulated tempering: A new Monte Carlo scheme
,”
Europhys. Lett.
19
,
451
458
(
1992
).
23.
C. J.
Geyer
and
E. A.
Thompson
, “
Annealing Markov chain Monte Carlo with applications to ancestral inference
,”
J. Am. Stat. Assoc.
90
,
909
920
(
1995
).
24.
D.
Frenkel
, “
Speed-up of Monte Carlo simulations by sampling of rejected states
,”
Proc. Natl. Acad. Sci. U. S. A.
101
,
17571
17575
(
2004
).
25.
A.
Kadoura
,
A.
Salama
, and
S.
Sun
, “
A conservative and a hybrid early rejection schemes for accelerating Monte Carlo molecular simulation
,”
Mol. Phys.
112
,
2575
2586
(
2014
).
26.
A.
Kadoura
,
A.
Salama
, and
S.
Sun
, “
Speeding up Monte Carlo molecular simulation by a non-conservative early rejection scheme
,”
Mol. Simul.
42
,
241
(
2015
).
27.
S.
Sun
,
A.
Kadoura
, and
A.
Salama
, “
An efficient method of reweighting and reconstructing Monte Carlo molecular simulation data for extrapolation to different temperature and density conditions
,” in
13th International Conference on Computational Science, Procedia Computer Science, Barcelona, Spain, 5–7 June 2013
(
Elsevier
,
2013
), pp.
2147
2156
.
28.
A.
Kadoura
,
S.
Sun
, and
A.
Salama
, “
Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions
,”
J. Comput. Phys.
270
,
70
85
(
2014
).
29.
A.
Kadoura
,
A.
Salama
, and
S.
Sun
, “
Switching between the NVT and NpT ensembles using the reweighting and reconstruction scheme
,” in
15th International Conference on Computational Science, Procedia Computer Science, Reykjavik, Iceland, 1–3 June 2015
(
Elsevier
,
2015
), pp.
1259
1268
.
30.
R.
Ghanem
and
J.
Red-Horse
, “
Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach
,”
Physica D: Nonlinear Phenomena.
133
,
137
144
(
1999
).
31.
O.
Knio
and
O.
Maitre
, “
Uncertainty propagation in CFD using polynomial chaos decomposition
,”
Fluid Dyn. Res.
38
,
616
640
(
2006
).
32.
I.
Sraj
,
M.
Iskandarani
,
A.
Srinivasan
,
W. C.
Thacker
,
J.
Winokur
,
A.
Alexanderian
,
C. Y.
Lee
,
S. S.
Chen
, and
O. M.
Knio
, “
Bayesian inference of drag parameters using AXBT data from Typhoon Fanapi
,”
Mon. Weather Rev.
141
,
2347
2367
(
2013
).
33.
I.
Sraj
,
K. T.
Mandli
,
O. M.
Knio
,
C. N.
Dawson
, and
I.
Hoteit
, “
Uncertainty quantification and inference of Mannings friction coefficients using DART buoy data during the Tōhoku tsunami
,”
Ocean Modell.
83
,
82
97
(
2014
).
34.
A.
Alexanderian
,
J.
Winokur
,
I.
Sraj
,
A.
Srinivasan
,
M.
Iskandarani
,
W. C.
Thacker
, and
O. M.
Knio
, “
Global sensitivity analysis in an ocean general circulation model: A sparse spectral projection approach
,”
Comput. Geosci.
16
,
757
778
(
2012
).
35.
R.
Ghanem
and
P.
Spanos
,
Stochastic Finite Elements: A Spectral Approach
(
Springer
,
New York
,
1991
).
36.
O. L.
Maitre
and
O.
Knio
,
Spectral Methods for Uncertainty Quantification
(
Springer
,
New York
,
2010
).
37.
O. L.
Maitre
,
O.
Knio
,
H.
Najm
, and
R.
Ghanem
, “
A stochastic projection method for fluid flow. I. Basic formulation
,”
J. Comput. Phys.
173
,
481
511
(
2001
).
38.
O. L.
Maitre
,
H. N.
Najm
,
P.
Pebay
,
R.
Ghanem
, and
O. M.
Knio
, “
Multi-resolution-analysis scheme for uncertainty quantification in chemical systems
,”
SIAM J. Sci. Comput.
29
,
864
889
(
2007
).
39.
H. N.
Najm
,
B.
Debusschere
,
Y.
Marzouk
,
S.
Widmer
, and
O. L.
Maitre
, “
Multi-resolution-analysis scheme for uncertainty quantification in chemical systems
,”
Int. J. Numer. Methods Eng.
80
,
789
814
(
2009
).
40.
B. D.
Phenix
,
J. L.
Dinaro
,
M. A.
Tatang
,
J. W.
Tester
,
J. B.
Howard
, and
G. J.
McRae
, “
Incorporation of parametric uncertainty into complex kinetic mechanisms: Application to hydrogen oxidation in supercritical water
,”
Combust. Flame
112
,
132
146
(
1998
).
41.
M. T.
Reagan
,
H. N.
Najm
,
P. P.
Pbay
,
O. M.
Knio
, and
R.
Ghanem
, “
Quantifying uncertainty in chemical systems modeling
,”
Int. J. Chem. Kinet.
37
,
368
382
(
2005
).
42.
F.
Rizzi
,
H. N.
Najm
,
B. J.
Debusschere
,
K.
Sargsyan
,
M.
Salloum
,
H.
Adalsteinsson
, and
O. M.
Knio
, “
Uncertainty quantification in MD simulations. Part I: Forward propagation
,”
Multiscale Model. Simul.
10
,
1428
1459
(
2012
).
43.
F.
Rizzi
,
H. N.
Najm
,
B. J.
Debusschere
,
K.
Sargsyan
,
M.
Salloum
,
H.
Adalsteinsson
, and
O. M.
Knio
, “
Uncertainty quantification in MD simulations. Part II: Bayesian inference of force-field parameters
,”
Multiscale Model. Simul.
10
,
1460
1492
(
2012
).
44.
F.
Rizzi
,
R.
Jones
,
B. J.
Debusschere
, and
O. M.
Knio
, “
Uncertainty quantification in MD simulations of concentration driven ionic flow through a silica nanopore. Part I: Sensitivity to physical parameters of the pore
,”
J. Chem. Phys.
138
,
194104
(
2013
).
45.
F.
Rizzi
,
R.
Jones
,
B. J.
Debusschere
, and
O. M.
Knio
, “
Uncertainty Quantification in MD simulations of concentration driven ionic flow through a silica nanopore. Part II: Uncertain potential parameters
,”
J. Chem. Phys.
138
,
194105
(
2013
).
46.
P.
Angelikopoulos
,
C.
Papadimitriou
, and
P.
Koumoutsakos
, “
Data driven, predictive molecular dynamics for nanoscale flow simulations under uncertainty
,”
J. Phys. Chem. B
117
,
14808
14816
(
2013
).
47.
M.
Salloum
,
K.
Sargsyan
,
R.
Jones
,
H. N.
Najm
, and
B.
Debusschere
, “
Quantifying sampling noise and parametric uncertainty in atomistic-to-continuum simulations using surrogate models
,”
Multiscale Model. Simul.
13
,
953
976
(
2015
).
48.
K.
Sargsyan
,
B.
Debusschere
,
H. N.
Najm
, and
Y.
Marzouk
, “
Bayesian inference of spectral expansions for predictability assessment in stochastic reaction networks
,”
J. Comput. Theor. Nanosci.
6
,
2283
2297
(
2009
).
49.
A. Z.
Panagiotopoulos
, “
Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble
,”
Mol. Phys.
61
,
813
826
(
1987
).
50.
A.
Panagiotopoulos
,
N.
Quirke
,
M.
Stapleton
, and
D.
Tildesley
, “
Phase equilibria by simulation in the Gibbs ensemble: Alternative derivation, generalization and application to mixture and membrane equilibria
,”
Mol. Phys.
63
,
527
545
(
1988
).
51.
B.
Smit
,
P.
Smedt
, and
D.
Frenkel
, “
Computer simulations in the Gibbs ensemble
,”
Mol. Phys.
68
,
931
950
(
1989
).
52.
A. Z.
Panagiotopoulos
, “
Direct determination of fluid phase equilibria by simulation in the Gibbs ensemble: A review
,”
Mol. Simul.
9
,
1
23
(
1992
).
53.
N.
Wiener
, “
The homogeneous chaos
,”
Am. J. Math.
60
,
897
936
(
1938
).
54.
E. W.
Lemmon
,
M. O.
McLinden
, and
D. G.
Friend
, “Thermophysical Properties of Fluid Systems” inNIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P. J. Linstrom and W. G. Mallard (National Institute of Standards and Technology, Gaithersburg MD, 2015), http://webbook.nist.gov.
55.
S. I.
Sandler
,
An Introduction to Applied Statistical Thermodynamics
(
Wiley
,
USA
,
2010
).
You do not currently have access to this content.