In the context of high-accuracy computational thermochemistry, the valence coupled cluster with all singles and doubles (CCSD) correlation component of molecular atomization energies presents the most severe basis set convergence problem, followed by the (T) component. In the present paper, we make a detailed comparison, for an expanded version of the W4-11 thermochemistry benchmark, between, on the one hand, orbital-based CCSD/AV{5,6}Z + d and CCSD/ACV{5,6}Z extrapolation, and on the other hand CCSD-F12b calculations with cc-pVQZ-F12 and cc-pV5Z-F12 basis sets. This latter basis set, now available for H–He, B–Ne, and Al–Ar, is shown to be very close to the basis set limit. Apparent differences (which can reach 0.35 kcal/mol for systems like CCl4) between orbital-based and CCSD-F12b basis set limits disappear if basis sets with additional radial flexibility, such as ACV{5,6}Z, are used for the orbital calculation. Counterpoise calculations reveal that, while total atomization energies with V5Z-F12 basis sets are nearly free of BSSE, orbital calculations have significant BSSE even with AV(6 + d)Z basis sets, leading to non-negligible differences between raw and counterpoise-corrected extrapolated limits. This latter problem is greatly reduced by switching to ACV{5,6}Z core-valence basis sets, or simply adding an additional zeta to just the valence orbitals. Previous reports that all-electron approaches like HEAT (high-accuracy extrapolated ab-initio thermochemistry) lead to different CCSD(T) limits than “valence limit + CV correction” approaches like Feller-Peterson-Dixon and Weizmann-4 (W4) theory can be rationalized in terms of the greater radial flexibility of core-valence basis sets. For (T) corrections, conventional CCSD(T)/AV{Q,5}Z + d calculations are found to be superior to scaled or extrapolated CCSD(T)-F12b calculations of similar cost. For a W4-F12 protocol, we recommend obtaining the Hartree-Fock and valence CCSD components from CCSD-F12b/cc-pV{Q,5}Z-F12 calculations, but the (T) component from conventional CCSD(T)/aug’-cc-pV{Q,5}Z + d calculations using Schwenke’s extrapolation; post-CCSD(T), core-valence, and relativistic corrections are to be obtained as in the original W4 theory. W4-F12 is found to agree slightly better than W4 with ATcT (active thermochemical tables) data, at a substantial saving in computation time and especially I/O overhead. A W4-F12 calculation on benzene is presented as a proof of concept.

1.
A.
Karton
, “
A computational chemist’s guide to accurate thermochemistry for organic molecules
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
6
(
3
),
292
310
(
2016
).
2.
K. A.
Peterson
,
D.
Feller
, and
D. A.
Dixon
, “
Chemical accuracy in ab initio thermochemistry and spectroscopy: Current strategies and future challenges
,”
Theor. Chem. Acc.
131
(
1
),
1079
(
2012
).
3.
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
, “
Gn theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
(
5
),
810
825
(
2011
).
4.
T.
Helgaker
,
W.
Klopper
, and
D.
Tew
, “
Quantitative quantum chemistry
,”
Mol. Phys.
106
(
16
),
2107
2143
(
2008
).
5.
J. M. L.
Martin
, “
Chapter 3 computational thermochemistry: A brief overview of quantum mechanical approaches
,”
Annu. Rep. Comput. Chem.
1
(
05
),
31
43
(
2005
).
6.
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
, “
Gaussian-4 theory
,”
J. Chem. Phys.
126
(
8
),
084108
(
2007
).
7.
G. P. F.
Wood
,
L.
Radom
,
G. A.
Petersson
,
E. C.
Barnes
,
M. J.
Frisch
, and
J. A.
Montgomery
, “
A restricted-open-shell complete-basis-set model chemistry
,”
J. Chem. Phys.
125
(
9
),
094106
(
2006
).
8.
G. A.
Petersson
,
A.
Bennett
,
T. G.
Tensfeldt
,
M. A.
Al-Laham
,
W. A.
Shirley
, and
J.
Mantzaris
, “
A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements
,”
J. Chem. Phys.
89
(
4
),
2193
2218
(
1988
).
9.
N.
Deyonker
,
B.
Wilson
,
A.
Pierpont
,
T.
Cundari
, and
A.
Wilson
, “
Towards the intrinsic error of the correlation consistent composite approach (ccCA)
,”
Mol. Phys.
107
(
8
),
1107
1121
(
2009
).
10.
N. J.
DeYonker
,
T. R.
Cundari
, and
A. K.
Wilson
, “
The correlation consistent composite approach (ccCA): Efficient and pan-periodic kinetics and thermodynamics in advances in the theory of atomic and molecular systems
,” in
Progress in Theoretical Chemistry and Physics
, edited by
P.
Piecuch
,
J.
Maruani
,
G.
Delgado-Barrio
, and
S.
Wilson
(
Springer Netherlands
,
Dordrecht
,
2009
), Vol.
19
, pp.
197
224
.
11.
N. J.
DeYonker
,
T. R.
Cundari
, and
A. K.
Wilson
, “
The correlation consistent composite approach (ccCA): An alternative to the Gaussian-N methods
,”
J. Chem. Phys.
124
(
11
),
114104
(
2006
).
12.
J. M. L.
Martin
and
G.
de Oliveira
, “
Towards standard methods for benchmark quality ab initio thermochemistry—W1 and W2 theory
,”
J. Chem. Phys.
111
(
5
),
1843
1856
(
1999
).
13.
S.
Parthiban
and
J. M. L.
Martin
, “
Assessment of W1 and W2 theories for the computation of electron affinities, ionization potentials, heats of formation, and proton affinities
,”
J. Chem. Phys.
114
(
14
),
6014
6029
(
2001
).
14.
S.
Parthiban
and
J. M. L.
Martin
, “
Fully ab initio atomization energy of benzene via Weizmann-2 theory
,”
J. Chem. Phys.
115
(
5
),
2051
2054
(
2001
).
15.
A.
Karton
and
J. M. L.
Martin
, “
Explicitly correlated Wn theory: W1-F12 and W2-F12
,”
J. Chem. Phys.
136
(
12
),
124114
(
2012
).
16.
B.
Chan
and
L.
Radom
, “
W3X: A cost-effective post-CCSD(T) composite procedure
,”
J. Chem. Theory Comput.
9
(
11
),
4769
4778
(
2013
).
17.
B.
Chan
and
L.
Radom
, “
W2X and W3X-L: Cost-Effective approximations to W2 and W4 with kJ mol–1 accuracy
,”
J. Chem. Theory Comput.
11
(
5
),
2109
2119
(
2015
).
18.
A.
Karton
,
E.
Rabinovich
,
J. M. L.
Martin
, and
B.
Ruscic
, “
W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions
,”
J. Chem. Phys.
125
(
14
),
144108
(
2006
).
19.
A.
Karton
,
P. R.
Taylor
, and
J. M. L.
Martin
, “
Basis set convergence of post-CCSD contributions to molecular atomization energies
,”
J. Chem. Phys.
127
(
6
),
064104
(
2007
).
20.
A.
Tajti
,
P. G.
Szalay
,
A. G.
Császár
,
M.
Kállay
,
J.
Gauss
,
E. F.
Valeev
,
B. A.
Flowers
,
J.
Vázquez
, and
J. F.
Stanton
, “
HEAT: High accuracy extrapolated ab initio thermochemistry
,”
J. Chem. Phys.
121
(
23
),
11599
11613
(
2004
).
21.
M. E.
Harding
,
J.
Vázquez
,
B.
Ruscic
,
A. K.
Wilson
,
J.
Gauss
, and
J. F.
Stanton
, “
High-accuracy extrapolated ab initio thermochemistry. III. Additional improvements and overview
,”
J. Chem. Phys.
128
(
11
),
114111
(
2008
).
22.
D.
Feller
,
K. A.
Peterson
, and
D. A.
Dixon
, “
A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures
,”
J. Chem. Phys.
129
(
20
),
204105
(
2008
).
23.
S.
Li
,
J. M.
Hennigan
,
D. A.
Dixon
, and
K. A.
Peterson
, “
Accurate thermochemistry for transition metal oxide clusters
,”
J. Phys. Chem. A
113
(
27
),
7861
7877
(
2009
).
24.
D. H.
Bross
,
J. G.
Hill
,
H.-J.
Werner
, and
K. A.
Peterson
, “
Explicitly correlated composite thermochemistry of transition metal species
,”
J. Chem. Phys.
139
(
9
),
094302
(
2013
).
25.
D.
Dixon
,
D.
Feller
, and
K.
Peterson
, “
A practical guide to reliable first principles computational thermochemistry predictions across the periodic table
,”
Annu. Rep. Comput. Chem.
8
,
1
28
(
2012
).
26.
D.
Feller
,
K. A.
Peterson
, and
B.
Ruscic
, “
Improved accuracy benchmarks of small molecules using correlation consistent basis sets
,”
Theor. Chem. Acc.
133
(
1
),
1407
(
2013
).
27.
I.
Shavitt
and
R. J.
Bartlett
,
Many—Body Methods in Chemistry and Physics
(
Cambridge University Press
,
Cambridge
,
2009
).
28.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
, “
A fifth-order perturbation comparison of electron correlation theories
,”
Chem. Phys. Lett.
157
(
6
),
479
483
(
1989
).
29.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
, “
Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients
,”
J. Chem. Phys.
98
(
11
),
8718
8733
(
1993
).
30.
M. E.
Harding
,
J.
Vázquez
,
J.
Gauss
,
J. F.
Stanton
, and
M.
Kállay
, “
Towards highly accurate ab initio thermochemistry of larger systems: Benzene
,”
J. Chem. Phys.
135
(
4
),
044513
(
2011
).
31.
J. M. L.
Martin
and
P. R.
Taylor
, “
A definitive heat of vaporization of silicon through benchmark ab initio calculations on SiF4
,”
J. Phys. Chem. A
103
(
23
),
4427
4431
(
1999
).
32.
J.
Martin
, “
Heat of atomization of sulfur trioxide, SO3: A benchmark for computational thermochemistry
,”
Chem. Phys. Lett.
310
(
3–4
),
271
276
(
1999
).
33.
G.
de Oliveira
,
J. M. L.
Martin
,
F.
de Proft
, and
P.
Geerlings
, “
Electron affinities of the first- and second-row atoms: Benchmark ab initio and density-functional calculations
,”
Phys. Rev. A
60
(
2
),
1034
1045
(
1999
).
34.
J. M. L.
Martin
,
A.
Sundermann
,
P. L.
Fast
, and
D. G.
Truhlar
, “
Thermochemical analysis of core correlation and scalar relativistic effects on molecular atomization energies
,”
J. Chem. Phys.
113
(
4
),
1348
1358
(
2000
).
35.
C.
Schwartz
, “
Importance of angular correlations between atomic electrons
,”
Phys. Rev.
126
(
3
),
1015
1019
(
1962
).
36.
R. N.
Hill
, “
Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method
,”
J. Chem. Phys.
83
(
3
),
1173
1196
(
1985
).
37.
W.
Kutzelnigg
and
J. D.
Morgan
, “
Rates of convergence of the partial-wave expansions of atomic correlation energies
,”
J. Chem. Phys.
96
(
6
),
4484
4508
(
1992
).
38.
U. R.
Fogueri
,
S.
Kozuch
,
A.
Karton
, and
J. M. L.
Martin
, “
A simple DFT-based diagnostic for nondynamical correlation
,”
Theor. Chem. Acc.
132
(
1
),
1291
(
2012
).
39.
G. D.
Purvis
and
R. J. A.
Bartlett
, “
Full coupled-cluster singles and doubles model: The inclusion of disconnected triples
,”
J. Chem. Phys.
76
(
4
),
1910
1918
(
1982
).
40.
M.
Urban
,
J.
Noga
,
S. J.
Cole
, and
R. J.
Bartlett
, “
Towards a full CCSDT model for electron correlation
,”
J. Chem. Phys.
83
(
8
),
4041
4046
(
1985
).
41.
K. A.
Peterson
and
T. H.
Dunning
, “
Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited
,”
J. Chem. Phys.
117
(
23
),
10548
10560
(
2002
).
42.
A.
Karton
,
S.
Daon
, and
J. M. L.
Martin
, “
W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from first-principles W4 data
,”
Chem. Phys. Lett.
510
,
165
178
(
2011
).
43.
A.
Karton
and
J. M. L.
Martin
, “
Comment on: ‘Estimating the Hartree–Fock limit from finite basis set calculations’ [Jensen F (2005) theor Chem Acc 113:267]
,”
Theor. Chem. Acc.
115
(
4
),
330
333
(
2005
).
44.
J. M. L.
Martin
, “
Ab initio total atomization energies of small Molecules—Towards the basis set limit
,”
Chem. Phys. Lett.
259
(
5–6
),
669
678
(
1996
).
45.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
, “
Basis-set convergence in correlated calculations on Ne, N2, and H2O
,”
Chem. Phys. Lett.
286
(
3–4
),
243
252
(
1998
).
46.
W.
Klopper
, “
Highly accurate coupled-cluster singlet and triplet pair energies from explicitly correlated calculations in comparison with extrapolation techniques
,”
Mol. Phys.
99
(
6
),
481
507
(
2001
).
47.
D.
Feller
, “
Application of a convergent, composite coupled cluster approach to bound state, adiabatic electron affinities in atoms and small molecules
,”
J. Chem. Phys.
144
(
1
),
014105
(
2016
).
48.
W.
Kutzelnigg
, “
R12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large L
,”
Theor. Chim. Acta
68
(
6
),
445
469
(
1985
).
49.
W.
Kutzelnigg
and
W.
Klopper
, “
Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory
,”
J. Chem. Phys.
94
(
3
),
1985
2001
(
1991
).
50.
D.
Tew
and
W.
Klopper
, “
New correlation factors for explicitly correlated electronic wave functions
,”
J. Chem. Phys.
123
(
7
),
074101
(
2005
).
51.
S.
Ten-no
, “
Initiation of explicitly correlated slater-type geminal theory
,”
Chem. Phys. Lett.
398
(
1–3
),
56
61
(
2004
).
52.
W.
Klopper
and
C. C. M.
Samson
, “
Explicitly correlated second-order Møller–Plesset methods with auxiliary basis sets
,”
J. Chem. Phys.
116
(
15
),
6397
6410
(
2002
).
53.
H.-J.
Werner
,
T. B.
Adler
, and
F. R.
Manby
, “
General orbital invariant MP2-F12 theory
,”
J. Chem. Phys.
126
(
16
),
164102
(
2007
).
54.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
, “
A simple and efficient CCSD(T)-F12 approximation
,”
J. Chem. Phys.
127
(
22
),
221106
(
2007
).
55.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
, “
Simplified CCSD(T)-F12 methods: Theory and benchmarks
,”
J. Chem. Phys.
130
(
5
),
054104
(
2009
).
56.
C.
Hättig
,
W.
Klopper
,
A.
Köhn
, and
D. P.
Tew
, “
Explicitly correlated electrons in molecules
,”
Chem. Rev.
112
(
1
),
4
74
(
2012
).
57.
L.
Kong
,
F. A.
Bischoff
, and
E. F.
Valeev
, “
Explicitly correlated R12/F12 methods for electronic structure
,”
Chem. Rev.
112
(
1
),
75
107
(
2012
).
58.
S.
Ten-no
and
J.
Noga
, “
Explicitly correlated electronic structure theory from R12/F12 Ansätze
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
(
1
),
114
125
(
2012
).
59.
D.
Feller
and
K. A.
Peterson
, “
An expanded calibration study of the explicitly correlated CCSD(T)-F12b method using large basis set standard CCSD(T) atomization energies
,”
J. Chem. Phys.
139
(
8
),
084110
(
2013
).
60.
D.
Feller
,
K. A.
Peterson
, and
J. G.
Hill
, “
Calibration study of the CCSD(T)-F12a/b methods for C2 and small hydrocarbons
,”
J. Chem. Phys.
133
(
18
),
184102
(
2010
).
61.
A.
Mahler
and
A. K.
Wilson
, “
Explicitly correlated methods within the ccCA methodology
,”
J. Chem. Theory Comput.
9
(
3
),
1402
1407
(
2013
).
62.
B.
Chan
and
L.
Radom
, “
W1X-1 and W1X-2: W1-Quality accuracy with an order of magnitude reduction in computational cost
,”
J. Chem. Theory Comput.
8
(
11
),
4259
4269
(
2012
).
63.
K. A.
Peterson
,
T. B.
Adler
, and
H.-J.
Werner
, “
Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B–Ne, and Al–Ar
,”
J. Chem. Phys.
128
(
8
),
084102
(
2008
).
64.
J. G.
Hill
,
S.
Mazumder
, and
K. A.
Peterson
, “
Correlation consistent basis sets for molecular core-valence effects with explicitly correlated wave functions: The atoms B–Ne and Al–Ar
,”
J. Chem. Phys.
132
(
5
),
054108
(
2010
).
65.
J. G.
Hill
and
K. A.
Peterson
, “
Correlation consistent basis sets for explicitly correlated wavefunctions: Valence and core-valence basis sets for Li, Be, Na, and Mg
,”
Phys. Chem. Chem. Phys.
12
(
35
),
10460
10468
(
2010
).
66.
J. G.
Hill
,
K. A.
Peterson
,
G.
Knizia
, and
H.-J.
Werner
, “
Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets
,”
J. Chem. Phys.
131
(
19
),
194105
(
2009
).
67.
K. A.
Peterson
,
M. K.
Kesharwani
, and
J. M. L.
Martin
, “
The cc-pV5Z-F12 basis Set: Reaching the basis set limit in explicitly correlated calculations
,”
Mol. Phys.
113
(
13–14
),
1551
1558
(
2015
).
68.
J. M. L.
Martin
and
M. K.
Kesharwani
, “
Assessment of CCSD(T)-F12 approximations and basis sets for harmonic vibrational frequencies
,”
J. Chem. Theory Comput.
10
(
5
),
2085
2090
(
2014
).
69.
B.
Brauer
,
M. K.
Kesharwani
, and
J. M. L.
Martin
, “
Some observations on counterpoise corrections for explicitly correlated calculations on noncovalent interactions
,”
J. Chem. Theory Comput.
10
(
9
),
3791
3799
(
2014
).
70.
B.
Brauer
,
M. K.
Kesharwani
,
S.
Kozuch
, and
J. M. L.
Martin
, “
The S66x8 benchmark for noncovalent interactions revisited: Explicitly correlated ab initio methods and density functional theory
,”
Phys. Chem. Chem. Phys.
(published online).
71.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
 et al., molpro, version 2012.1, a package of ab initio programs, 2012, see http://www.molpro.net.
72.
M.
Kallay
,
Z.
Rolik
,
J.
Csontos
,
I.
Ladjanski
,
L.
Szegedy
,
B.
Ladoczki
, and
G.
Samu
,
MRCC, A Quantum Chemical Program Suite
(
Budapest University of Technology and Economics
,
Budapest, Hungary
,
2015
), see http://www.mrcc.hu.
73.
M.
Kállay
and
P.
Surjan
, “
Higher excitations in coupled-cluster theory
,”
J. Chem. Phys.
115
,
2945
(
2001
).
74.
M.
Kállay
and
J.
Gauss
, “
Higher excitations in coupled-cluster theory
,”
J. Chem. Phys.
123
,
214105
(
2005
).
75.
M.
Kállay
and
J.
Gauss
, “
Higher excitations in coupled-cluster theory. II. Extension to general single-determinant reference functions and improved approaches for the canonical Hartree-Fock case
,”
J. Chem. Phys.
129
,
144101
(
2009
).
76.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
, “
Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations
,”
J. Chem. Phys.
116
(
8
),
3175
3183
(
2002
).
77.
K. E.
Yousaf
and
K. A.
Peterson
, “
Optimized auxiliary basis sets for explicitly correlated methods
,”
J. Chem. Phys.
129
(
18
),
184108
(
2008
).
78.
F.
Weigend
, “
A fully direct RI-HF Algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency
,”
Phys. Chem. Chem. Phys.
4
(
18
),
4285
4291
(
2002
).
79.
F.
Weigend
, “
Hartree-Fock exchange fitting basis Sets for H to Rn
,”
J. Comput. Chem.
29
,
167
175
(
2008
).
80.
J.
Noga
and
J.
Šimunek
, “
On the one-particle basis set relaxation in R12 based theories
,”
Chem. Phys.
356
(
1–3
),
1
6
(
2009
).
81.
D.
Feller
,
K. A.
Peterson
, and
J.
Grant Hill
, “
On the effectiveness of CCSD(T) complete basis set extrapolations for atomization energies
,”
J. Chem. Phys.
135
(
4
),
044102
(
2011
).
82.
C.
Hättig
, “
Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core-valence and quintuple-zeta basis Sets for H to Ar and QZVPP basis sets for Li to Kr
,”
Phys. Chem. Chem. Phys.
7
(
1
),
59
66
(
2005
).
83.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
(
9
),
6796
6806
(
1992
).
84.
K. E.
Yousaf
and
K. A.
Peterson
, “
Optimized complementary auxiliary basis sets for explicitly correlated methods: Aug-cc-pVnZ orbital basis sets
,”
Chem. Phys. Lett.
476
(
4–6
),
303
307
(
2009
).
85.
C.
Hättig
,
D. P.
Tew
, and
A.
Köhn
, “
Communications: Accurate and efficient approximations to explicitly correlated coupled-cluster singles and doubles, CCSD-F12
,”
J. Chem. Phys.
132
(
23
),
231102
(
2010
).
86.
D. W.
Schwenke
, “
The extrapolation of one-electron basis sets in electronic structure calculations: How it should work and how it can Be made to work
,”
J. Chem. Phys.
122
(
1
),
014107
(
2005
).
87.
A. D.
Boese
,
M.
Oren
,
O.
Atasoylu
,
J. M. L.
Martin
,
M.
Kallay
, and
J.
Gauss
, “
W3 Theory: Robust computational thermochemistry in the kJ/mol accuracy range
,”
J. Chem. Phys.
120
(
9
),
4129
4141
(
2004
).
88.
O.
Marchetti
and
H.-J.
Werner
, “
Accurate calculations of intermolecular interaction energies using explicitly correlated wave functions
,”
Phys. Chem. Chem. Phys.
10
(
23
),
3400
3409
(
2008
).
89.
D.
Feller
, “
Statistical electronic structure calibration study of the CCSD(T*)-F12b method for atomization energies
,”
J. Phys. Chem. A
119
(
28
),
7375
7387
(
2015
).
90.
J.
Rezáč
,
K. E.
Riley
, and
P.
Hobza
, “
S66: A well-balanced database of benchmark interaction energies relevant to biomolecular structures
,”
J. Chem. Theory Comput.
7
(
8
),
2427
2438
(
2011
).
91.
T. H.
Dunning
,
K. A.
Peterson
, and
A. K.
Wilson
, “
Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited
,”
J. Chem. Phys.
114
(
21
),
9244
9253
(
2001
).
92.
A. K.
Wilson
,
T.
van Mourik
, and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon
,”
J. Mol. Struct. THEOCHEM
388
,
339
349
(
1996
).
93.
T.
Van Mourik
,
A. K.
Wilson
, and
T. H.
Dunning
, “
Benchmark calculations with correlated molecular wavefunctions. XIII. Potential energy curves for He2, Ne2 and Ar2 using correlation consistent basis sets through augmented sextuple zeta
,”
Mol. Phys.
96
(
4
),
529
547
(
1999
).
94.
D. E.
Woon
and
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon
,”
J. Chem. Phys.
103
(
11
),
4572
4585
(
1995
).
95.
K. A.
Peterson
,
A. K.
Wilson
,
D. E.
Woon
, and
T. H.
Dunning
, Jr.
, “
Benchmark calculations with correlated molecular wave functions
,”
Theor. Chem. Acc.
97
(
1–4
),
251
259
(
1997
).
96.
J. E.
Del Bene
, “
Proton affinities of ammonia, water, and hydrogen fluoride and their anions: A quest for the basis-set limit using the dunning augmented correlation-consistent basis sets
,”
J. Phys. Chem.
97
(
1
),
107
110
(
1993
).
97.
E.
Papajak
and
D. G.
Truhlar
, “
Convergent partially augmented basis sets for post-Hartree–Fock calculations of molecular properties and reaction barrier heights
,”
J. Chem. Theory Comput.
7
(
1
),
10
18
(
2011
).
98.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
, “
Extensions of the S66 data Set: More accurate interaction energies and angular-displaced nonequilibrium geometries
,”
J. Chem. Theory Comput.
7
(
11
),
3466
3470
(
2011
).
99.
D.
Feller
and
K. A.
Peterson
, “
Re-examination of atomization energies for the Gaussian-2 set of molecules
,”
J. Chem. Phys.
110
(
17
),
8384
8396
(
1999
).
100.
D.
Feller
and
J. A.
Sordo
, “
Performance of CCSDT for diatomic dissociation energies
,”
J. Chem. Phys.
113
(
2
),
485
493
(
2000
).
101.
D.
Feller
,
K. A.
Peterson
, and
T. D.
Crawford
, “
Sources of error in electronic structure calculations on small chemical systems
,”
J. Chem. Phys.
124
(
5
),
054107
(
2006
).
102.
B. H.
Wells
and
S.
Wilson
, “
Van der Waals interaction potentials: Basis set superposition effects in electron correlation calculations
,”
Mol. Phys.
50
(
6
),
1295
1309
(
1983
).
103.
D. S.
Ranasinghe
and
G. A.
Petersson
, “
CCSD(T)/CBS atomic and molecular benchmarks for H through Ar
,”
J. Chem. Phys.
138
(
14
),
144104
(
2013
).
104.
E.
Miliordos
,
E.
Aprà
, and
S. S.
Xantheas
, “
Benchmark theoretical study of the π-π binding energy in the benzene dimer
,”
J. Phys. Chem. A
118
(
35
),
7568
7578
(
2014
).
105.
B.
Ruscic
,
R. E.
Pinzon
,
M. L.
Morton
,
G.
von Laszevski
,
S. J.
Bittner
,
S. G.
Nijsure
,
K. A.
Amin
,
M.
Minkoff
, and
A. F.
Wagner
, “
Introduction to active thermochemical tables: Several ‘key’ enthalpies of formation revisited
,”
J. Phys. Chem. A
108
(
45
),
9979
9997
(
2004
).
106.
B.
Ruscic
,
R. E.
Pinzon
,
G.
von Laszewski
,
D.
Kodeboyina
,
A.
Burcat
,
D.
Leahy
,
D.
Montoy
, and
A. F.
Wagner
, “
Active thermochemical tables: Thermochemistry for the 21st century
,”
J. Phys. Conf. Ser.
16
,
561
570
(
2005
).
107.
B.
Ruscic
,
R. E.
Pinzon
,
M. L.
Morton
,
N. K.
Srinivasan
,
M.-C.
Su
,
J. W.
Sutherland
, and
J. V.
Michael
, “
Active thermochemical tables: Accurate enthalpy of formation of hydroperoxyl radical, HO2
,”
J. Phys. Chem. A
110
(
21
),
6592
6601
(
2006
).
108.
W. R.
Stevens
,
B.
Ruscic
, and
T.
Baer
, “
Heats of formation of C6H5•, C6H5+, and C6H5NO by threshold photoelectron photoion coincidence and active thermochemical tables analysis
,”
J. Phys. Chem. A
114
(
50
),
13134
13145
(
2010
).
109.
B.
Ruscic
, “
Active thermochemical tables: Water and water dimer
,”
J. Phys. Chem. A
117
(
46
),
11940
11953
(
2013
).
110.
B.
Ruscic
,
D.
Feller
, and
K. A.
Peterson
, “
Active thermochemical tables: Dissociation energies of several homonuclear first-row diatomics and related thermochemical values
,”
Theor. Chem. Acc.
133
(
1
),
1415
(
2013
).
111.
B.
Ruscic
, “
Active thermochemical tables: Sequential bond dissociation enthalpies of methane, ethane, and methanol and the related thermochemistry
,”
J. Phys. Chem. A
119
(
28
),
7810
7837
(
2015
).
112.
See supplementary material at http://dx.doi.org/10.1063/1.4952410 for V5Z-F12 and V5Z-F12(rev2) basis sets for H, B–Ne, and Al–Ar in machine-readable format, as well as Cartesian coordinates for the 14 additional species in the W4–15 dataset.

Supplementary Material

You do not currently have access to this content.