Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ16−22 and Aβ37−42 of the full length Aβ1−42 Alzheimer’s peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, which incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ16−22 dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ16−22 and the dimer and trimer of Aβ37−42. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ16−22 decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ37−42 decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.

1.
O. S.
Makin
and
L. C.
Serpell
,
FEBS J.
272
,
5950
(
2005
).
2.
R.
Nelson
and
D.
Eisenberg
,
Curr. Opin. Struct. Biol.
16
,
260
(
2006
).
4.
J.
Nasica-Labouze
,
P. H.
Nguyen
,
F.
Sterpone
,
O.
Berthoumieu
,
N. V.
Buchete
,
S.
Cote
,
A. D.
Simone
,
A.
Doig
,
P.
Faller
,
A.
Garcia
 et al,
Chem. Rev.
115
,
3518
(
2015
).
5.
P. H.
Nguyen
and
P.
Derreumaux
,
Acc. Chem. Res.
47
,
603
(
2014
).
6.
A. J.
Doig
and
P.
Derreumaux
,
Curr. Opin. Struct. Biol.
30
,
50
(
2015
).
7.
J. C.
Rochet
and
P. T.
Lansbury
,
Curr. Opin. Struct. Biol.
10
,
60
(
2000
).
8.
F.
Chiti
and
C. M.
Dobson
,
Annu. Rev. Biochem.
75
,
333
(
2006
).
9.
R.
Krishnan
and
S. L.
Lindquist
,
Nature
435
,
765
(
2005
).
10.
A.
Lomakin
and
D. B.
Teplow
,
Protein Pept. Lett.
13
,
247
(
2006
).
11.
I. A.
Mastrangelo
,
M.
Ahmed
,
T.
Sato
,
W.
Liu
,
C.
Wang
,
P.
Hough
, and
S.
Smith
,
J. Mol. Biol.
358
,
106
(
2006
).
12.
C. T.
Middleton
,
P.
Marek
,
P.
Cao
,
C. C.
Chiu
,
S.
Singh
,
A. M.
Woys
,
J.
De Pablo
,
D. P.
Raleigh
, and
M. T.
Zanni
,
Nat. Chem.
4
,
355
(
2012
).
13.
D.
Matthes
,
V.
Gapsys
, and
B. L.
de Groot
,
J. Mol. Biol.
421
,
390
(
2012
).
14.
D.
Matthes
,
V.
Gapsys
,
V.
Daebel
, and
B. L.
de Groot
,
PLoS One
6
,
e19129
(
2011
).
15.
F.
Baftizadeh
,
X.
Biarnes
,
F.
Pietrucci
,
F.
Affinito
, and
A.
Laio
,
J. Am. Chem. Soc.
134
,
3886
(
2012
).
16.
P. H.
Nguyen
and
P.
Derreumaux
,
J. Phys. Chem. B
117
,
5831
(
2013
).
17.
H. D.
Nguyen
and
C. K.
Hall
,
Proc. Natl. Acad. Sci. U. S. A.
101
,
16180
(
2004
).
18.
R.
Pellarin
and
A.
Caflisch
,
J. Mol. Biol.
360
,
882
(
2006
).
19.
G.
Wei
,
N.
Mousseau
, and
P.
Derreumaux
,
Prion
1
,
3
(
2007
).
20.
N. L.
Fawzi
,
K. L.
Kohlstedt
,
Y.
Okabe
, and
T.
Head-Gordon
,
Biophys. J.
94
,
2007
(
2008
).
21.
G.
Bellesia
and
J. E.
Shea
,
J. Chem. Phys.
131
,
111102
(
2009
).
22.
B.
Urbanc
,
L.
Cruz
,
S.
Yun
,
S. V.
Buldyrev
,
G.
Bitan
,
D. B.
Teplow
, and
H. E.
Stanley
,
Proc. Natl. Acad. Sci. U. S. A.
101
,
17345
(
2004
).
23.
P.
Derreumaux
and
N.
Mousseau
,
J. Chem. Phys.
126
,
025101
(
2007
).
24.
J.
Sorensen
,
X.
Periole
,
K. K.
Skeby
,
S. J.
Marrink
, and
B.
Schiott
,
Phys. Chem. Lett.
2
,
2385
(
2012
).
25.
D. W.
Li
,
S.
Mohanty
,
A.
Irback
, and
S.
Huo
,
PLoS Comput. Biol.
4
,
e1000238
(
2008
).
26.
J.
Nasica-Labouze
,
M.
Meli
,
P.
Derreumaux
,
G.
Colombo
, and
N.
Mousseau
,
PLoS Comput. Biol.
7
,
1002051
(
2011
).
27.
Y.
Chebaro
and
P.
Derreumaux
,
Proteins
75
,
442
(
2009
).
28.
N. S.
Bieler
,
T. P. J.
Knowles
,
D.
Frenkel
, and
R.
Vacha
,
PLoS Comput. Biol.
8
,
e1002692
(
2012
).
29.
A.
Melquiond
,
N.
Mousseau
, and
P.
Derreumaux
,
Proteins
65
,
180
(
2006
).
30.
Y.
Lu
,
P.
Derreumaux
,
Z.
Guo
,
N.
Mousseau
, and
G.
Wei
,
Proteins
75
,
954
(
2009
).
31.
S.
Santini
,
G.
Wei
,
N.
Mousseau
, and
P.
Derreumaux
,
Structure
12
,
1245
(
2004
).
32.
S.
Santini
,
N.
Mousseau
, and
P.
Derreumaux
,
J. Am. Chem. Soc.
126
,
11509
(
2004
).
33.
A.
Melquiond
,
G.
Boucher
,
N.
Mousseau
, and
P.
Derreumaux
,
J. Chem. Phys.
122
,
174904
(
2005
).
34.
W.
Song
,
G.
Wei
,
N.
Mousseau
, and
P.
Derreumaux
,
J. Phys. Chem. B
112
,
4410
(
2008
).
35.
R.
Ni
,
S. A. M.
Schor
,
M. A. C.
Stuart
, and
P.
Bolhuis
,
Phys. Rev. Lett.
111
,
058101
(
2003
).
36.
P.
Gupta
,
C. K.
Hall
, and
A. C.
Voegler
,
Protein Sci.
7
,
2642
(
1998
).
37.
P. M.
Harrison
,
H. S.
Chan
,
S. B.
Prusiner
, and
F. E.
Cohen
,
Protein Sci.
10
,
819
(
2001
).
38.
R. I.
Dima
and
D.
Thirumalai
,
Protein Sci.
11
,
1036
(
2002
).
39.
M. S.
Li
,
D. K.
Klimov
,
J. E.
Straub
, and
D.
Thirumalai
,
J. Chem. Phys.
129
,
175101
(
2008
).
40.
S.
Abeln
,
M.
Vendruscolo
,
C.
Dobson
, and
D.
Frenkel
,
PloS One
9
,
e85185
(
2014
).
41.
F.
Sterpone
,
S.
Melchionna
,
P.
Tuffery
,
S.
Pasquali
,
N.
Mousseau
,
T.
Cragnolini
,
Y.
Chebaro
,
J. S.
Saint-Pierre
,
M.
Kalimeri
,
A.
Barducci
 et al,
Chem. Rev. Soc.
43
,
4871
(
2015
).
42.
Y.
Chebaro
,
S.
Pasquali
, and
P.
Derreumaux
,
J. Phys. Chem. B
116
,
8741
(
2012
).
43.
S.
Fabio
,
P. H.
Nguyen
,
M.
Kalimeri
, and
P.
Derreumaux
,
J. Chem. Theory Comput.
9
,
4574
(
2013
).
44.
Y.
Shen
,
J.
Maupetit
,
P.
Derreumaux
, and
P.
Tuffery
,
J. Chem. Theory Comput.
10
,
4745
(
2104
).
45.
M. R.
Sawaya
,
S.
Sambashivan
,
R.
Nelson
,
M. I.
Ivanova
,
S. A.
Sievers
,
M. I.
Apostol
,
M. J.
Thompson
,
M.
Balbirnie
,
J. J. W.
Wiltzius
,
H. T.
McFarlane
 et al,
Nature
447
,
453
(
2005
).
46.
R.
Nelson
,
M. R.
Sawaya
,
M.
Balbirnie
,
A.
Madsen
,
C.
Riekel
,
R.
Grothe
, and
D.
Eisenberg
,
Nature
435
,
773
(
2005
).
47.
S.
Abeln
and
D.
Frenkel
,
Biophys. J.
100
,
693
(
2011
).
48.
M. S.
Li
,
N. T.
Co
,
C. K. H. G.
Reddy
,
J.
Straub
, and
D.
Thirumalai
,
Phys. Rev. Lett.
105
,
218101
(
2010
).
49.
S.
Abeln
and
D.
Frenkel
,
PloS Comput. Biol.
4
,
e1000241
(
2008
).
50.
51.
I.
Coluzza
,
H.
Muller
, and
D.
Frenkel
,
Phys. Rev. E
68
,
46703
(
2003
).
52.
J. P.
Lee
,
R. R.
Stimson
,
J. R.
Ghilardi
,
P. W.
Mantyh
,
Y. A.
Lu
,
A. M.
Felix
,
W.
Llanos
,
A.
Behbin
,
M.
Cummings
,
M. V.
Criekinge
 et al,
Biochem.
34
,
5191
(
1995
).
53.
T.
Luhrs
,
C.
Ritter
,
M.
Adrian
,
D.
Riek-Loher
,
B.
Bohrmann
,
H.
Dobell
,
D.
Schubert
, and
R.
Riek
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
17342
(
2005
).
54.
K.
Lindorff-Larsen
,
S.
Piana
,
K.
Palmo
,
P.
Maragakis
,
J. L.
Klepeis
,
R. O.
Dror
, and
D.
Shaw
,
Proteins: Struct., Funct., Bioinf.
78
,
1950
(
2010
).
55.
A.
Patriksson
and
D.
van der Spoel
,
Phys. Chem. Chem. Phys
10
,
2073
(
2008
).
56.
See http://folding.bmc.uu.se/remd/index.php for the WEB-server (2008).
57.
E.
Lindahl
,
B.
Hess
, and
D.
van der Spoel
,
J. Mol. Model.
7
,
306
(
2001
).
58.
J. P.
Ryckaert
,
G.
Cicotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
60.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
61.
D. D. G.
Bussi
and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
62.
D.
Frishman
and
P.
Argos
,
Proteins
23
,
566
(
1995
).
63.
C.
Zannoni
,
Advances in the Computer Simulations of Liquid Crystals
(
Kluwer Academics
,
Dordrecht
,
2000
).
64.
P.
Nguyen
,
M. S.
Li
,
J. E.
Staub
, and
D.
Thirumalai
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
111
(
2007
).
65.
M. R.
Betancourt
and
D.
Thirumalai
,
Protein Sci.
8
,
361
(
1999
).
66.
P. H.
Nguyen
,
M. S.
Li
, and
P.
Derreumaux
,
Phys. Chem. Chem. Phys.
13
,
9778
(
2011
).
67.
P.
Derreumaux
,
J. Chem. Phys.
106
,
5260
(
1997
).
68.
P.
Derreumaux
,
J. Chem. Phys.
107
,
1941
(
1997
).
69.
F.
Forcellino
and
P.
Derreumaux
,
Proteins
45
,
159
(
2001
).
70.
J.
Balbach
,
J.
Ishii
,
Y.
Antzutkin
,
O.
Leapman
,
R.
Rizzo
,
N.
Dyda
,
F.
Reed
, and
R.
Tycko
,
Biochemistry
39
,
13748
(
2000
).
71.
T.
Knowles
,
C.
Waudby
,
G.
Devlin
,
S.
Cohen
,
A.
Aguzzi
,
M.
Vendruscolo
,
E.
Terentjev
,
M.
Welland
, and
C.
Dobson
,
Science
326
,
1533
(
2009
).
72.
U. F.
Rohrig
,
A.
Laio
,
N.
Tantalo
,
M.
Parrinello
, and
R.
Petrozio
,
Biophys. J.
91
,
3217
(
2006
).
73.
74.
A.
Irback
,
S. E.
Jonsson
,
N.
Linnemann
,
B.
Linse
, and
S.
Wallin
,
Phys. Rev. Lett.
110
,
058101
(
2013
).
75.
M. S.
Shell
,
J. Chem. Phys.
129
,
144108
(
2008
).
76.
D.
Reith
,
M.
Puetz
, and
F.
Mueller-Plathe
,
J. Comput. Chem.
24
,
1624
(
2003
).
77.
S.
Izvekov
and
G. A.
Voth
,
J. Phys. Chem. B
109
,
2469
(
2005
).
78.
S.
Piana
,
K.
Lindorff-Larsen
, and
D. E.
Shaw
,
Biophys. J.
100
,
L47
(
2010
).
79.
K.
Lindorff-Larsen
,
P.
Maragakis
,
S.
Piana
,
M. P.
Eastwood
,
R. O.
Dror
, and
D. E.
Shaw
,
PLoS One
7
,
e32131
(
2012
).
80.
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
, and
D. E.
Shaw
,
Science
334
,
517
(
2011
).
81.
M. H.
Viet
,
P.
Derreumaux
, and
P. H.
Nguyen
,
J. Chem. Phys.
143
,
021101
(
2015
).
82.
J.
Nasica-Labouze
and
N.
Mousseau
,
PLoS Comput. Biol.
8
,
1002782
(
2012
).
83.
R. D.
Hills
and
C. L.
Brooks
III
,
J. Mol. Biol.
368
,
894
(
2007
).
84.
Y.
Zou
,
Y.
Sun
,
Y.
Zhu
,
B.
Ma
,
R.
Nussinov
, and
Q.
Zhang
,
ACS Chem. Neurosci.
(
2016
).
85.
N. T.
Co
and
M. S.
Li
,
J. Chem. Phys.
137
,
095101
(
2012
).
86.
A.
De Simone
,
C.
Kitchen
,
A. H.
Kwan
,
M.
Sunde
,
C. M.
Dobson
, and
D.
Frenkel
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
6951
(
2012
).
87.
P.
Ghosh
,
A.
Vaidya
,
A.
Kumar
, and
V.
Rangachari
,
Math. Biosci.
273
,
70
(
2016
).
88.
R.
Pellarin
,
P.
Schuetz
,
E.
Guarnera
, and
A.
Caflisch
,
J. Am. Chem. Soc.
132
,
14960
(
2009
).
89.
M. S.
Li
,
N. T.
Co
,
G.
Reddy
,
C. K.
Hu
,
J. E.
Straub
, and
D.
Thirumalai
,
Phys. Rev. Lett.
105
,
218101
(
2010
).
90.
R.
Cabriolu
and
S.
Auer
,
J. Mol. Biol.
411
,
275
(
2011
).
91.
K.
Garai
,
B.
Sahoo
,
P.
Sengupta
, and
S.
Maiti
,
J. Chem. Phys.
128
,
045102
(
2008
).
92.
P. H.
Nguyen
,
B.
Tarus
, and
P.
Derreumaux
,
J. Phys. Chem. B
118
,
501
(
2014
).
93.
A.
De Simone
and
P.
Derreumaux
,
J. Chem. Phys
132
,
165103
(
2010
).
94.
J.
Chebaro
,
P.
Jiang
,
T.
Zang
,
Y.
Mu
,
P. H.
Nguyen
,
N.
Mousseau
, and
P.
Derreumaux
,
J. Phys. Chem. B
116
,
8412
(
2012
).
95.
T.
Zhang
,
J.
Zhang
,
P.
Derreumaux
, and
Y.
Mu
,
J. Phys. Chem. B
117
,
3993
(
2013
).
96.
See supplementary material at http://dx.doi.org/10.1063/1.4951739 for the Abeln force field and the sampling convergence of the REMC simulations with OPEP by comparing structural quantities and energies using the half and full trajectories. Then, we show the heat capacity obtained using the best set of parameters, which allows us to identify the “room” temperatures of all systems. Finally, a comparison between the AMBER-f99SB-ILDN and CHARMM22* REMD simulations of the Aβ16−22 monomer and trimer is presented.

Supplementary Material

You do not currently have access to this content.