We consider the efficiency of self-phoretic colloidal particles (swimmers) as a function of the heterogeneity in the surface reaction rate. The set of fluid, species, and electrostatic continuity equations is solved analytically using a linearization and numerically using a finite-element method. To compare spherical swimmers of different size and with heterogeneous catalytic conversion rates, a “swimmer efficiency” functional η is introduced. It is proven that in order to obtain maximum swimmer efficiency, the reactivity has to be localized at the pole(s). Our results also shed light on the sensitivity of the propulsion speed to details of the surface reactivity, a property that is notoriously hard to measure. This insight can be utilized in the design of new self-phoretic swimmers.
REFERENCES
The minimum diameter of the Pt component that was achieved was measured to be 325 ± 30 nm. This Pt “sphere” was attached to a 970 nm in diameter inert silica sphere, leading to a diameter ratio of roughly 1:3.