We consider the efficiency of self-phoretic colloidal particles (swimmers) as a function of the heterogeneity in the surface reaction rate. The set of fluid, species, and electrostatic continuity equations is solved analytically using a linearization and numerically using a finite-element method. To compare spherical swimmers of different size and with heterogeneous catalytic conversion rates, a “swimmer efficiency” functional η is introduced. It is proven that in order to obtain maximum swimmer efficiency, the reactivity has to be localized at the pole(s). Our results also shed light on the sensitivity of the propulsion speed to details of the surface reactivity, a property that is notoriously hard to measure. This insight can be utilized in the design of new self-phoretic swimmers.

1.
S.
Ramaswamy
,
Annu. Rev. Condens. Matter Phys.
1
,
323
(
2010
).
2.
M.
Marchetti
 et al.,
Rev. Mod. Phys.
85
,
1143
(
2013
).
3.
S. J.
Ebbens
and
J. R.
Howse
,
Soft Matter
6
,
726
(
2010
).
4.
Y.
Hong
,
D.
Velegol
,
N.
Chaturvedi
, and
A.
Sen
,
Phys. Chem. Chem. Phys.
12
,
1423
(
2010
).
5.
S.
Sengupta
,
M. E.
Ibele
, and
A.
Sen
,
Angew. Chem. Int. Ed.
51
,
8434
(
2012
).
6.
W.
Wang
,
W.
Duan
,
S.
Ahmed
,
T. E.
Mallouk
, and
A.
Sen
,
Nano Today
8
,
531
(
2013
).
7.
S.
Sánchez
,
L.
Soler
, and
J.
Katuri
,
Angew. Chem. Int. Ed.
54
,
1414
(
2015
).
8.
B. J.
Nelson
,
I. K.
Kaliakatsos
, and
J. J.
Abbott
,
Annu. Rev. Biomed. Eng.
12
,
55
(
2010
).
9.
W.
Wang
 et al.,
Angew. Chem. Int. Ed.
53
,
3201
(
2014
).
11.
S.
Sundararajan
,
S.
Sengupta
,
M. E.
Ibele
, and
A.
Sen
,
Small
6
,
1479
(
2010
).
13.
W.
Gao
and
J.
Wang
,
Nanoscale
6
,
10486
(
2014
).
14.
H.-L.
Lien
and
W.-x.
Zhang
,
J. Environ. Eng.
125
,
1042
(
1999
).
15.
M. J.
Kim
and
K. S.
Breuer
,
Phys. Fluids
16
,
L78
(
2004
).
16.
J. P.
Hernandez-Ortiz
,
C. G.
Stoltz
, and
M. D.
Graham
,
Phys. Rev. Lett.
95
,
204501
(
2005
).
17.
M. J.
Kim
and
K. S.
Breuer
,
Anal. Chem.
79
,
955
(
2007
).
18.
D.
Pushkin
and
J.
Yeomans
,
Phys. Rev. Lett.
111
,
188101
(
2013
).
20.
M.
Cates
and
J.
Tailleur
,
Annu. Rev. Condens. Matter Phys.
6
,
219
(
2015
).
21.
A.
Brown
and
W.
Poon
,
Soft Matter
10
,
4016
(
2014
).
22.
S.
Ebbens
,
M.-H.
Tu
,
J. R.
Howse
, and
R.
Golestanian
,
Phys. Rev. E
85
,
020401
(
2012
).
23.
24.
J. R.
Howse
 et al.,
Phys. Rev. Lett.
99
,
048102
(
2007
).
25.
T.-C.
Lee
 et al.,
Nano Lett.
14
,
2407
(
2014
).
26.
W. F.
Paxton
 et al.,
J. Am. Chem. Soc.
126
,
13424
(
2004
).
27.
J.
Simmchen
 et al.,
RSC Adv.
4
,
20334
(
2014
).
28.
L. F.
Valadares
 et al.,
Small
6
,
565
(
2010
).
29.
Y.
Wang
 et al.,
Langmuir
22
,
10451
(
2006
).
30.
J.
Moran
,
P.
Wheat
, and
J.
Posner
,
Phys. Rev. E
81
,
065302
(
2010
).
31.
B.
Sabass
and
U.
Seifert
,
J. Chem. Phys.
136
,
214507
(
2012
).
32.
A.
Brown
,
W.
Poon
,
C.
Holm
, and
J.
de Graaf
, e-print arXiv:1512.01778.
33.
J.
Gibbs
,
N.
Fragnito
, and
Y.
Zhao
,
Appl. Phys. Lett.
97
,
253107
(
2010
).
34.
W.
Paxton
,
A.
Sen
, and
T.
Mallouk
,
Chem. Eur. J.
11
,
6462
(
2005
).
35.
B.
Sabass
and
U.
Seifert
,
Phys. Rev. Lett.
105
,
218103
(
2010
).
36.
B.
Sabass
and
U.
Seifert
,
J. Chem. Phys.
136
,
064508
(
2012
).
37.
W.
Wang
,
T.-Y.
Chiang
,
D.
Velegol
, and
T.
Mallouk
,
J. Am. Chem. Soc.
135
,
10557
(
2013
).
38.
A.
Nourhani
and
P. E.
Lammert
,
Phys. Rev. Lett.
116
,
178302
(
2016
).
39.
P.
Dhar
 et al.,
Nano Lett.
6
,
66
(
2006
).
40.
M.
Popescu
,
S.
Dietrich
,
M.
Tasinkevych
, and
J.
Ralston
,
Eur. Phys. J. E
31
,
351
(
2010
).
41.
R.
Golestanian
,
T. B.
Liverpool
, and
A.
Ajdari
,
New J. Phys.
9
,
126
(
2007
).
42.
J.
Moran
and
J.
Posner
,
J. Fluid Mech.
680
,
31
(
2011
).
43.
I.
Buttinoni
 et al.,
Phys. Rev. Lett.
110
,
238301
(
2013
).
44.

The minimum diameter of the Pt component that was achieved was measured to be 325 ± 30 nm. This Pt “sphere” was attached to a 970 nm in diameter inert silica sphere, leading to a diameter ratio of roughly 1:3.

45.
J. L.
Anderson
,
Annu. Rev. Fluid Mech.
21
,
61
(
1989
).
46.
J. F.
Brady
,
J. Fluid Mech.
667
,
216
(
2011
).
47.
N.
Sharifi-Mood
,
J.
Koplik
, and
C.
Maldarelli
,
Phys. Fluids
25
,
012001
(
2013
).
48.
S.
Shklyaev
,
J.
Brady
, and
U.
Córdova-Figueroa
,
J. Fluid Mech.
748
,
488
(
2014
).
49.
J.
de Graaf
,
G.
Rempfer
, and
C.
Holm
,
IEEE Trans. NanoBiosci.
14
,
272
(
2015
).
50.
S.
Michelin
and
E.
Lauga
,
Eur. Phys. J. E
38
,
1
(
2015
).
51.
D.
Saintillan
and
M.
Shelley
,
Phys. Fluids
20
,
123304
(
2008
).
52.
S.
Wang
and
A.
Ardekani
,
Sci. Rep.
5
,
17448
(
2015
).
53.
J.
Dunkel
,
V.
Putz
,
I.
Zaid
, and
J.
Yeomans
,
Soft Matter
6
,
4268
(
2010
).
54.
S.
Sengupta
 et al.,
Nat. Chem.
6
,
415
(
2014
).
55.
M.
Moreno-Guzman
,
A.
Jodra
,
M.-A.
López
, and
A.
Escarpa
,
Anal. Chem.
87
,
12380
(
2015
).
56.
L.
Baraban
 et al.,
ACS Nano
6
,
3383
(
2012
).
57.
C.
Kreuter
,
U.
Siems
,
P.
Nielaba
,
P.
Leiderer
, and
A.
Erbe
,
Eur. Phys. J.: Spec. Top.
222
,
2923
(
2013
).
58.
P.
Han
and
D. M.
Bartels
,
J. Phys. Chem.
100
,
5597
(
1996
).
59.
T.
Sridhar
and
O.
Potter
,
Chem. Eng. Commun.
21
,
47
(
1983
).
60.
CRC Handbook of Chemistry and Physics
, 93rd ed., edited by
W. M.
Haynes
(
CRC Press
,
Boca Raton, U.S.A.
,
2013
).
You do not currently have access to this content.