Quadratic convergence throughout the active space is achieved for the gradient ascent pulse engineering (GRAPE) family of quantum optimal control algorithms. We demonstrate in this communication that the Hessian of the GRAPE fidelity functional is unusually cheap, having the same asymptotic complexity scaling as the functional itself. This leads to the possibility of using very efficient numerical optimization techniques. In particular, the Newton-Raphson method with a rational function optimization (RFO) regularized Hessian is shown in this work to require fewer system trajectory evaluations than any other algorithm in the GRAPE family. This communication describes algebraic and numerical implementation aspects (matrix exponential recycling, Hessian regularization, etc.) for the RFO Newton-Raphson version of GRAPE and reports benchmarks for common spin state control problems in magnetic resonance spectroscopy.

1.
M. F.
Dempsey
,
B.
Condon
, and
D. M.
Hadley
, “MRI safety review,” Semin. Ultrasound CT MRI 23, 392–401 (2002).
2.
P. L.
Gor’kov
,
E. Y.
Chekmenev
,
C.
Li
,
M.
Cotten
,
J. J.
Buffy
,
N. J.
Traaseth
,
G.
Veglia
, and
W. W.
Brey
, “
Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz
,”
J. Magn. Reson.
185
,
77
93
(
2007
).
3.
Y.
Iwasa
, “
HTS and NMR/MRI magnets: Unique features, opportunities, and challenges
,”
Physica C
445–448
,
1088
1094
(
2006
).
4.
S. A.
Sarji
,
B. J. J.
Abdullah
,
G.
Kumar
,
A. H.
Tan
, and
P.
Narayanan
, “
Failed magnetic resonance imaging examinations due to claustrophobia
,”
Australas. Radiol.
42
,
293
295
(
1998
).
5.
L. S.
Pontryagin
,
V. G.
Boltanskii
,
R. S.
Gamkrelidze
, and
E. F.
Mishchenko
,
The Mathematical Theory of Optimal Processes
(
Pergamon
,
1964
).
6.
S. J.
Glaser
,
U.
Boscain
,
T.
Calarco
,
C. P.
Koch
,
W.
Köckenberger
,
R.
Kosloff
,
I.
Kuprov
,
B.
Luy
,
S.
Schirmer
, and
T.
Schulte-Herbrüggen
, “
Training Schrödinger’s cat: Quantum optimal control
,”
Eur. Phys. J. D
69
,
1
24
(
2015
).
7.
Y.
Maday
and
G.
Turinici
, “
New formulations of monotonically convergent quantum control algorithms
,”
J. Chem. Phys.
118
,
8191
8196
(
2003
).
8.
N.
Khaneja
,
T.
Reiss
,
C.
Kehlet
,
T.
Schulte-Herbruggen
, and
S. J.
Glaser
, “
Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms
,”
J. Magn. Reson.
172
,
296
305
(
2005
).
9.
D. J.
Tannor
,
Introduction to Quantum Mechanics: A Time-Dependent Perspective
(
University Science Books
,
2007
), Vol.
75
.
10.
R.
Fletcher
,
Practical Methods of Optimization
, 2nd ed. (
Wiley
,
1987
).
11.
J.
Nocedal
and
S. J.
Wright
,
Numerical Optimization
, 2nd ed. (
Springer
,
2006
).
12.
L.
Lasdon
,
S.
Mitter
, and
A.
Waren
, “
The conjugate gradient method for optimal control problems
,”
IEEE Trans. Autom. Control
12
,
132
138
(
1967
).
13.
P.
de Fouquieres
,
S. G.
Schirmer
,
S. J.
Glaser
, and
I.
Kuprov
, “
Second order gradient ascent pulse engineering
,”
J. Magn. Reson.
212
,
412
417
(
2011
).
14.
R.
Eitan
,
M.
Mundt
, and
D. J.
Tannor
, “
Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods
,”
Phys. Rev. A
83
,
053426
(
2011
).
15.
D. L.
Goodwin
and
I.
Kuprov
, “
Auxiliary matrix formalism for interaction representation transformations, optimal control, and spin relaxation theories
,”
J. Chem. Phys.
143
,
084113
(
2015
).
16.
D. C.
Liu
and
J.
Nocedal
, “
On the limited memory BFGS method for large scale optimization
,”
Math. Program.
45
,
503
528
(
1989
).
17.
R. H.
Byrd
,
J.
Nocedal
, and
R. B.
Schnabel
, “
Representations of quasi-Newton matrices and their use in limited memory methods
,”
Math. Program.
63
,
129
156
(
1994
).
18.
I.
Najfeld
and
T. F.
Havel
, “
Derivatives of the matrix exponential and their computation
,”
Adv. Appl. Math.
16
,
321
375
(
1995
).
19.
H. J.
Hogben
,
M.
Krzystyniak
,
G. T.
Charnock
,
P. J.
Hore
, and
I.
Kuprov
, “
Spinach—A software library for simulation of spin dynamics in large spin systems
,”
J. Magn. Reson.
208
,
179
194
(
2011
).
20.
G. M.
Amdahl
, “
Validity of the single processor approach to achieving large scale computing capabilities
,” in
Proceedings of the Spring Joint Computer Conference, 18–20 April 1967
(
ACM
,
1967
), pp.
483
485
.
21.
A. D.
Bandrauk
and
H.
Shen
, “
Improved exponential split operator method for solving the time-dependent Schrödinger equation
,”
Chem. Phys. Lett.
176
,
428
432
(
1991
).
22.
R. B.
Sidje
, “
Expokit: A software package for computing matrix exponentials
,”
ACM Trans. Math. Software
24
,
130
156
(
1998
).
23.
T. H.
Cormen
,
C. E.
Leiserson
,
R. L.
Rivest
, and
C.
Stein
,
Introduction to Algorithms
(
MIT Press
,
2009
).
24.
W. D.
Maurer
and
T. G.
Lewis
, “
Hash table methods
,”
ACM Comput. Surv.
7
,
5
19
(
1975
).
25.
R.
Sedgewick
,
Algorithms in Java
(
Addison-Wesley Professional
,
2002
).
26.
D. E.
Knuth
,
The Art of Computer Programming
(
Addison-Wesley
,
Upper Saddle River, NJ
,
2005
).
27.
N. T.
Courtois
,
M.
Grajek
, and
R.
Naik
, “
Optimizing SHA256 in bitcoin mining
,” in
Cryptography and Security Systems
(
Springer
,
2014
), pp.
131
144
.
28.
X.
Wang
and
H.
Yu
, “
How to break MD5 and other hash functions
,” in
Advances in Cryptology–EUROCRYPT 2005
(
Springer
,
2005
), pp.
19
35
.
29.
D.
Evans
,
Suicides in the United Kingdom
(
UK Office for National Statistics
,
2013
).
30.
B.
Jacob
,
S.
Ng
, and
D.
Wang
,
Memory Systems: Cache, DRAM, Disk
(
Morgan Kaufmann
,
2010
).
31.
J. A.
Jarvis
,
I. M.
Haies
,
P. T. F.
Williamson
, and
M.
Carravetta
, “
An efficient NMR method for the characterisation of 14 N sites through indirect 13 C detection
,”
Phys. Chem. Chem. Phys.
15
,
7613
7620
(
2013
).
32.
J.
Gregory
,
Vera Circuli Et Hyperbolae Quadratura
(
Heredes Pauli Frambotti
,
1667
).
33.
B.
Taylor
,
Methodus Incrementorum Directa Et Inversa
(
Gulielmus Innys
,
1715
).
34.
S. M.
Goldfeld
,
R. E.
Quandt
, and
H. F.
Trotter
, “
Maximization by quadratic hill-climbing
,”
Econometrica
34
,
541
551
(
1966
).
35.
J.
Greenstadt
, “
On the relative efficiencies of gradient methods
,”
Math. Comput.
21
,
360
367
(
1967
).
36.
A.
Banerjee
and
F.
Grein
, “
Convergence behavior of some multiconfiguration methods
,”
Int. J. Quantum Chem.
10
,
123
134
(
1976
).
37.
M.
Hebden
,
An Algorithm for Minimization Using Exact Second Derivatives
(
UKAEA Theoretical Physics Division
,
Harwell
,
1973
).
38.
D.
Goldfarb
, “
Curvilinear path steplength algorithms for minimization which use directions of negative curvature
,”
Math. Program.
18
,
31
40
(
1980
).
39.
C. J.
Cerjan
and
W. H.
Miller
, “
On finding transition states
,”
J. Chem. Phys.
75
,
2800
2806
(
1981
).
40.
J. J.
Moré
and
D. C.
Sorensen
,
Newton’s Method
(
Argonne National Laboratory
,
Argonne, IL
,
1982
).
41.
R.
Shepard
,
I.
Shavitt
, and
J.
Simons
, “
Comparison of the convergence characteristics of some iterative wave function optimization methods
,”
J. Chem. Phys.
76
,
543
557
(
1982
).
42.
J. J.
Moré
and
D. C.
Sorensen
, “
Computing a trust region step
,”
SIAM J. Sci. Stat. Comput.
4
,
553
572
(
1983
).
43.
A.
Banerjee
,
N.
Adams
,
J.
Simons
, and
R.
Shepard
, “
Search for stationary points on surfaces
,”
J. Phys. Chem.
89
,
52
57
(
1985
).
44.
J.
Baker
, “
An algorithm for the location of transition states
,”
J. Comput. Chem.
7
,
385
395
(
1986
).
45.
G. H.
Golub
and
C. F.
Van Loan
,
Matrix Computations
, 4th ed. (
The John Hopkins University Press
,
2013
).
46.
A.
Goldstein
and
J.
Price
, “
An effective algorithm for minimization
,”
Numer. Math.
10
,
184
189
(
1967
).
47.
K.
Levenberg
,
A Method for the Solution of Certain Non–Linear Problems in Least Squares
(
Quarterly Journal of Applied Mathematics
,
1944
).
48.
D. W.
Marquardt
, “
An algorithm for least-squares estimation of nonlinear parameters
,”
J. Soc. Ind. Appl. Math.
11
,
431
441
(
1963
).
49.
P. E.
Gill
and
W.
Murray
, “
Newton-type methods for unconstrained and linearly constrained optimization
,”
Math. Program.
7
,
311
350
(
1974
).
50.
P. E.
Gill
,
W.
Murray
, and
M. H.
Wright
,
Practical Optimization
(
Academic Press
,
1981
).
51.
H.
Padé
,
Sur la Représentation Approchée d’une Fonction Par Des Fractions Rationnelles
(
Gauthier-Villars et fils
,
1892
).
52.
P.
Wolfe
, “
Convergence conditions for ascent methods
,”
SIAM Rev.
11
,
226
235
(
1969
).
53.
P.
Wolfe
, “
Convergence conditions for ascent methods. II: Some corrections
,”
SIAM Rev.
13
,
185
188
(
1971
).
54.
I.
Kuprov
, “
Spin system trajectory analysis under optimal control pulses
,”
J. Magn. Reson.
233
,
107
112
(
2013
).
55.
G.
von Winckel
and
A.
Borzi
, “
Qucon: A fast Krylov–Newton code for dipole quantum control problems
,”
Comput. Phys. Commun.
181
,
2158
2163
(
2010
).
56.
G.
Ciaramella
and
A.
Borzi
, “
Skryn: A fast semismooth-Krylov–Newton method for controlling ising spin systems
,”
Comput. Phys. Commun.
190
,
213
223
(
2015
).
57.
See supplementary material at http://dx.doi.org/10.1063/1.4949534 for the Spinach console logs giving complete spin system and algorithm setting details for the simulations described in the paper.

Supplementary Material

You do not currently have access to this content.