A complicated yet interesting induced photon emission can take place by a nonadiabatic intramolecular electron transfer system like LiF under an intense CW laser [Y. Arasaki, S. Scheit, and K. Takatsuka, J. Chem. Phys. 138, 161103 (2013)]. Behind this phenomena, the crossing point between two potential energy curves of covalent and ionic natures in diabatic representation is forced to oscillate, since only the ionic potential curve is shifted significantly up and down repeatedly (called the Dynamical Stark effect). The wavepacket pumped initially to the excited covalent potential curve frequently encounters such a dynamically moving crossing point and thereby undergoes very complicated dynamics including wavepacket bifurcation and deformation. Intramolecular electron transfer thus driven by the coupling between nonadiabatic state-mixing and laser fields induces irregular photon emission. Here in this report we discuss the complicated spectral features of this kind of photon emission induced by infrared laser. In the low frequency domain, the photon emission is much more involved than those of ultraviolet/visible driving fields, since many field-dressed states are created on the ionic potential, which have their own classical turning points and crossing points with the covalent counterpart. To analyze the physics behind the phenomena, we develop a perturbation theoretic approach to the Riccati equation that is transformed from coupled first-order linear differential equations with periodic coefficients, which are supposed to produce the so-called Floquet states. We give mathematical expressions for the Floquet energies, frequencies, and intensities of the photon emission spectra, and the cutoff energy of their harmonic generation. Agreement between these approximate quantities and those estimated with full quantum calculations is found to be excellent. Furthermore, the present analysis provides with notions to facilitate deeper understanding for the physical and mathematical mechanisms of the present photon emission.

1.
B. J.
Sussman
,
D.
Townsend
,
M. Yu.
Ivanov
, and
A.
Stolow
,
Science
314
,
278
(
2006
).
2.
O.
Smirnova
,
Y.
Mairesse
,
S.
Patchkovskii
,
N.
Dudovich
,
D.
Villeneuve
,
P.
Corkum
, and
M. Y.
Ivanov
,
Nature
460
,
972
(
2009
).
3.
A. E.
Boguslavskiy
,
J.
Mikosch
,
A.
Gijsbertsen
,
M.
Spanner
,
S.
Patchkovskii
,
N.
Gador
,
M. J. J.
Vrakking
, and
A.
Stolow
,
Science
335
,
1336
(
2012
).
4.
M.
Protopapas
,
C. H.
Keitel
, and
P. L.
Knight
,
Rep. Prog. Phys.
60
,
389
(
1997
).
5.
M. F.
Kling
and
M. J.
Vrakking
,
Annu. Rev. Chem. Phys.
59
,
463
(
2008
).
6.
F.
Krausz
and
M. Y.
Ivanov
,
Rev. Mod. Phys.
81
,
163
(
2009
).
7.
A.
Jasper
,
B. K.
Kendrick
,
C. A.
Mead
, and
D. G.
Truhlar
, in
Modern Trends in Chemical Reaction Dynamics
, edited by
X.
Yang
and
K.
Liu
(
World Scientific
,
Singapore
,
2004
).
8.
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
,
Conical Intersections
(
World Scientific
,
Singapore
,
2004
).
9.
M.
Baer
,
Beyond Born-Oppenheimer
(
Wiley-Interscieince
,
Hoboken, New Jersey
,
2006
).
10.
H.
Nakamura
,
Nonadiabatic Transition: Concepts, Basic Theories and Applications
, 2nd ed. (
World Scientific
,
Singapore
,
2012
).
11.
K.
Takatsuka
,
T.
Yonehara
,
K.
Hanasaki
, and
Y.
Arasaki
,
Chemical Theory Beyond the Born-Oppenheimer Paradigm
(
World Scientific
,
Singapore
,
2015
).
12.
T.
Ho
and
S.-I.
Chu
,
Chem. Phys. Lett.
141
,
315
(
1987
).
13.
S.-I.
Chu
,
J. Chem. Phys.
94
,
7901
(
1991
).
14.
G.
Yao
and
S.-I.
Chu
,
Chem. Phys. Lett.
197
,
413
(
1992
).
15.
K.
Hanasaki
and
K.
Takatsuka
,
Phys. Rev. A
88
,
053426
(
2014
).
16.
Y.
Arasaki
,
K.
Takatsuka
,
K.
Wang
, and
V.
McKoy
,
J. Chem. Phys.
119
,
7913
(
2003
).
17.
Y.
Arasaki
,
K.
Takatsuka
,
K.
Wang
, and
V.
McKoy
,
J. Chem. Phys.
132
,
124307
(
2010
).
18.
Y.-C.
Han
,
K.-J.
Yuan
,
W.-H.
Hu
, and
S.-L.
Cong
,
J. Chem. Phys.
130
,
044308
(
2009
).
19.
S.
Scheit
,
Y.
Arasaki
, and
K.
Takatsuka
,
J. Phys. Chem. A
116
,
2644
(
2012
).
20.
Y.
Arasaki
and
K.
Takatsuka
,
Phys. Chem. Chem. Phys.
12
,
1239
(
2010
).
21.
Y.
Arasaki
,
K.
Wang
,
V.
McKoy
, and
K.
Takatsuka
,
Phys. Chem. Chem. Phys.
13
,
8681
(
2011
).
22.
Y.
Arasaki
,
S.
Scheit
, and
K.
Takatsuka
,
J. Chem. Phys.
138
,
161103
(
2013
).
23.
Y.
Arasaki
,
Y.
Mizuno
,
S.
Scheit
, and
K.
Takatsuka
,
J. Chem. Phys.
141
,
234301
(
2014
).
24.
Y.
Arasaki
,
Y.
Mizuno
,
S.
Scheit
, and
K.
Takatsuka
, “Stark-assisted quantum confinement of wavepackets. A coupling of nonadiabatic interaction and CW-laser” (submitted).
25.
S.-I.
Chu
and
D. A.
Telnov
,
Phys. Rep.
390
,
1
(
2004
).
26.
B.
Sundaram
and
P. W.
Milonni
,
Phys. Rev. A
41
,
6571
(
1990
).
27.
K.
Burnett
,
V. C.
Reed
,
J.
Cooper
, and
P. L.
Knight
,
Phys. Rev. A
45
,
3347
(
1992
).
28.
D. J.
Diestler
,
Phys. Rev. A
78
,
033814
(
2008
).
29.
A. D.
Bandrauk
,
S.
Chelkowski
,
D. J.
Diestler
,
J.
Manz
, and
K.-J.
Yuan
,
Phys. Rev. A
79
,
023403
(
2009
).
30.
Y.-C.
Han
and
L. B.
Madsen
,
Phys. Rev. A
81
,
063430
(
2010
).
31.
T. J.
Giese
and
D. M.
York
,
J. Chem. Phys.
120
,
7939
(
2004
).
32.
M. D.
Feit
,
J. A.
Fleck
, Jr.
, and
A.
Steiger
,
J. Comput. Phys.
47
,
412
(
1982
).
33.
P.
Dietrich
and
P. B.
Corkum
,
J. Chem. Phys
97
,
3187
(
1992
).
34.
D.
Neuhasuer
and
M.
Baer
,
J. Chem. Phys.
90
,
4351
(
1989
).
35.
36.
M.
Lewenstein
,
Ph.
Balcou
,
M. Yu.
Ivanov
,
A.
L’Huillier
, and
P. B.
Corkum
,
Phys. Rev. A
49
,
2117
(
1994
).
37.
J. M.
Dahlström
,
A. L.
Huillier
, and
A.
Maquet
,
J. Phys. B
45
,
183001
(
2012
).
38.
T.
Yonehara
,
K.
Hanasaki
, and
K.
Takatsuka
,
Chem. Rev.
112
,
499
(
2012
).
39.
T.
Yonehara
and
K.
Takatsuka
,
J. Phys. Chem. A
117
,
8599
(
2013
).
40.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of  Mathematical Functions with Formulas, Graphs, and Mathematical Tables
(
Dover
,
New York
,
1965
).
41.
B. S.
Newberger
,
J. Math. Phys.
23
,
1278
(
1982
).
42.
P. K.
Jakobsen
,
Phys. Scr.
90
,
025501
(
2015
).
43.
Y.
Mizuno
,
Y.
Arasaki
, and
K.
Takatsuka
, “Direct observation of nonadiabatic nuclear wavepacket dynamics with the spectrogram of induced photon emission driven by continuous laser fields” (to be published).
You do not currently have access to this content.