In this work, we demonstrate that for moderate sized systems, here a system with 13 atoms, global coupled potential energy surfaces defined for several electronic states over a wide energy range and for distinct regions of nuclear coordinate space characterized by distinct electron configurations, can be constructed with precise energetics and an excellent description of non-adiabatic interactions in all regions. This is accomplished using a recently reported algorithm for constructing quasi-diabatic representations, Hd, of adiabatic electronic states coupled by conical intersections. In this work, the algorithm is used to construct an Hd to describe the photodissociation of phenol from its first and second excited electronic states. The representation treats all 33 internal degrees of freedom in an even handed manner. The ab initio adiabatic electronic structure data used to construct the fit are obtained exclusively from multireference configuration interaction with single and double excitation wave functions comprised of 88 × 106 configuration state functions, at geometries determined by quasi-classical trajectories. Since the algorithm uses energy gradients and derivative couplings in addition to electronic energies to construct Hd, data at only 7379 nuclear configurations are required to construct a representation, which describes all nuclear configurations involved in H atom photodissociation to produce the phenoxyl radical in its ground or first excited electronic state, with a mean unsigned energy error of 202.9 cm−1 for electronic energies <60 000 cm−1.

1.
X.
Zhu
and
D. R.
Yarkony
,
J. Chem. Phys.
140
,
024112
(
2014
).
2.
K. R.
Yang
,
X.
Xu
,
J.
Zheng
, and
D. G.
Truhlar
,
Chem. Sci.
5
,
4661
(
2014
).
3.
X.
Xu
,
K. R.
Yang
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
9
,
3612
(
2013
).
4.
O. P.
Vieuxmaire
,
Z.
Lan
,
A. L.
Sobolewski
, and
W.
Domcke
,
J. Chem. Phys.
129
,
224307
(
2008
).
5.
G. M.
Roberts
,
A. S.
Chatterley
,
J. D.
Young
, and
V. G.
Stavros
,
J. Phys. Chem. Lett.
3
,
348
(
2012
).
6.
S. G.
Ramesh
and
W.
Domcke
,
Faraday Discuss.
163
,
73
(
2013
).
7.
G. A.
Pino
,
A. N.
Olfdani
,
E.
Marceca
,
M.
Fujii
,
S.-L.
Ishiuchi
,
M.
Miyazaki
,
M.
Broquier
,
C.
Dedonder
, and
C.
Jouvet
,
J. Chem. Phys.
133
,
124313
(
2010
).
8.
M. G. D.
Nix
,
A. L.
Devine
,
B.
Cronin
,
R. N.
Dixon
, and
M. N. R.
Ashfold
,
J. Chem. Phys.
125
,
133318
(
2006
).
9.
M.
Nix
,
A.
Devine
,
R.
Dixon
, and
M.
Ashfold
,
Chem. Phys. Lett.
463
,
305
(
2008
).
10.
Z.
Lan
,
W.
Domcke
,
V.
Vallet
,
A. L.
Sobolewski
, and
S.
Mahapatra
,
J. Chem. Phys.
122
,
224315
(
2005
).
11.
G. A.
King
,
A. L.
Devine
,
M. G. D.
Nix
,
D. E.
Kelly
, and
M. N. R.
Ashfold
,
Phys. Chem. Chem. Phys.
10
,
6417
(
2008
).
12.
T. N. V.
Karsili
,
A. M.
Wenge
,
B.
Marchetti
, and
M. N. R.
Ashfold
,
Phys. Chem. Chem. Phys.
16
,
588
(
2014
).
13.
T. N. V.
Karsili
,
A. M.
Wenge
,
S. J.
Harris
,
D.
Murdock
,
J. N.
Harvey
,
R. N.
Dixon
, and
M. N. R.
Ashfold
,
Chem. Sci.
4
,
2434
(
2013
).
14.
J.
Lorentzon
,
P.-Å.
Malmqvist
,
M.
Fülscher
, and
B. O.
Roos
,
Theor. Chem. Acc.
91
,
91
(
1995
).
15.
A.
Iqbal
,
M.
Cheung
,
M.
Nix
, and
V.
Stavros
,
J. Phys. Chem. A
113
,
8157
(
2009
).
16.
M. L.
Hause
,
Y. H.
Yoon
,
A. S.
Case
, and
F. F.
Crim
,
J. Chem. Phys.
128
,
104307
(
2008
).
17.
A.
Devine
,
M.
Nix
,
R.
Dixon
, and
M.
Ashfold
,
J. Phys. Chem. A
112
,
9563
(
2008
).
18.
M. N. R.
Ashfold
,
A. L.
Devine
,
R. N.
Dixon
,
G. A.
King
,
M. G. D.
Nix
, and
T. A. A.
Oliver
,
PNAS
105
,
12701
(
2008
).
19.
H.
An
and
K.
Baeck
,
J. Phys. Chem. A
115
,
13309
(
2011
).
20.
P.
Saxe
,
B. H.
Lengsfield
, and
D. R.
Yarkony
,
Chem. Phys. Lett.
113
,
159
(
1985
).
21.
B. H.
Lengsfield
,
P.
Saxe
, and
D. R.
Yarkony
,
J. Chem. Phys.
81
,
4549
(
1984
).
22.
B. H.
Lengsfield
and
D. R.
Yarkony
, in
State-Selected and State to State Ion-Molecule Reaction Dynamics: Part 2 Theory
, edited by
M.
Baer
and
C.-Y.
Ng
(
John Wiley and Sons
,
New York
,
1992
), p.
1
.
23.
H.
Lischka
,
M.
Dallos
,
P.
Szalay
,
D. R.
Yarkony
, and
R.
Shepard
,
J. Chem. Phys.
120
,
7322
(
2004
).
24.
M.
Dallos
,
H.
Lischka
,
R.
Shepard
,
D. R.
Yarkony
, and
P.
Szalay
,
J. Chem. Phys.
120
,
7330
(
2004
).
25.
X.
Zhu
and
D. R.
Yarkony
,
J. Chem. Phys.
141
,
174109
(
2014
).
26.
Z. H.
Li
,
A. W.
Jasper
,
D. A.
Bonhommeau
,
R.
Valero
, and
D. G.
Truhlar
, ANT, University of Minnesota, 2009.
27.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
28.
H. C.
Longuet-Higgins
,
Mol. Phys.
6
,
445
(
1963
).
29.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
, 2nd ed. (
NRC Research Press
,
Ottawa
,
1998
).
30.
H.
Lischka
,
R.
Shepard
,
I.
Shavitt
,
R.
Pitzer
,
M.
Dallos
,
T.
Müller
,
P. G.
Szalay
,
F. B.
Brown
,
R.
Alhrichs
,
H. J.
Böhm
,
A.
Chang
,
D. C.
Comeau
,
R.
Gdanitz
,
H.
Dachsel
,
C.
Erhard
,
M.
Ernzerhof
,
P.
Höchtl
,
S.
Irle
,
G.
Kedziora
,
T.
Kovar
,
V.
Parasuk
,
M.
Pepper
,
P.
Scharf
,
H.
Schiffer
,
M.
Schindler
,
M.
Schüler
, and
J.-G.
Zhao
, COLUMBUS, anab initio electronic structure program, University of Vienna, 2003.
31.
P. R.
Bunker
,
C. J. H.
Schutte
,
J. T.
Hougen
,
I. M.
Mills
,
J. K. G.
Watson
, and
B. P.
Winnewisser
,
Pure Appl. Chem.
69
,
1651
(
1997
).
32.
X.
Zhu
, SURFGEN, a computer program, 2015, https://github.com/virtualzx-nad/surfgen.
33.
See supplementary material at http://dx.doi.org/10.1063/1.4938236 for supplementary tables.
34.
H. D.
Bist
,
J. C. D.
Brand
, and
D. R.
Williams
,
J. Mol. Spectrosc.
21
,
76
(
1966
).
35.
H. D.
Bist
,
J. C. D.
Brand
, and
D. R.
Williams
,
J. Mol. Spectrosc.
24
,
413
(
1967
).
36.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
77
,
6090
(
1982
).
37.
S.
Fatehi
,
E.
Alguire
,
Y.
Shao
, and
J. E.
Subotnik
,
J. Chem. Phys.
135
,
234105
(
2011
).
38.
M. A.
Collins
,
O.
Godsi
,
S.
Liu
, and
D. H.
Zhang
,
J. Chem. Phys.
135
,
234307
(
2011
).
39.
X.
Zhu
and
D. R.
Yarkony
,
J. Chem. Phys.
137
,
22A511
(
2012
).
40.
X.
Zhu
and
D. R.
Yarkony
,
J. Chem. Phys.
136
,
174110
(
2012
).

Supplementary Material

You do not currently have access to this content.