Diffusion in one dimensional rugged energy landscape (REL) is predicted to be pathologically different (from any higher dimension) with a much larger chance of encountering broken ergodicity [D. L. Stein and C. M. Newman, AIP Conf. Proc. 1479, 620 (2012)]. However, no quantitative study of this difference has been reported, despite the prevalence of multidimensional physical models in the literature (like a high dimensional funnel guiding protein folding/unfolding). Paradoxically, some theoretical studies of these phenomena still employ a one dimensional diffusion description for analytical tractability. We explore the dimensionality dependent diffusion on REL by carrying out an effective medium approximation based analytical calculations and compare them with the available computer simulation results. We find that at an intermediate level of ruggedness (assumed to have a Gaussian distribution), where diffusion is well-defined, the value of the effective diffusion coefficient depends on dimensionality and changes (increases) by several factors (∼5-10) in going from 1d to 2d. In contrast, the changes in subsequent transitions (like 2d to 3d and 3d to 4d and so on) are far more modest, of the order of 10-20% only. When ruggedness is given by random traps with an exponential distribution of barrier heights, the mean square displacement (MSD) is sub-diffusive (a well-known result), but the growth of MSD is described by different exponents in one and higher dimensions. The reason for such strong ruggedness induced retardation in the case of one dimensional REL is discussed. We also discuss the special limiting case of infinite dimension (d = ∞) where the effective medium approximation becomes exact and where theoretical results become simple. We discuss, for the first time, the role of spatial correlation in the landscape on diffusion of a random walker.

1.
J. M.
Ziman
,
Models of Disorder
(
Cambridge University Press
,
Cambridge, London
,
1979
).
2.
B.
Bagchi
,
Molecular Relaxation in Liquids
(
Oxford University Press
,
New York
,
2012
).
3.
D. J.
Wales
,
Energy Landscapes
(
Cambridge University Press
,
Cambridge
,
2003
).
4.
H.
Scher
and
M.
Lax
,
Phys. Rev. B
7
,
4491
(
1973
).
5.
H.
Scher
and
M.
Lax
,
J. Non-Cryst. Solids
8-10
,
497
(
1972
).
6.
H.
Scher
and
E. W.
Montroll
,
Phys. Rev. B
12
,
2455
(
1975
).
7.
E. W.
Montroll
and
G. H.
Weiss
,
J. Math. Phys.
6
,
167
(
1965
).
8.
J.
Bernasconi
,
H. U.
Beyeler
,
S.
Strässler
, and
S.
Alexander
,
Phys. Rev. Lett.
42
,
819
(
1979
).
9.
A.
Miller
and
E.
Abraham
,
Phys. Rev.
120
,
745
(
1960
).
10.
V.
Ambegaokar
,
B. I.
Halperin
, and
J. S.
Langer
,
Phys. Rev. B
4
,
2612
(
1971
).
11.
K. P. N.
Murthy
and
K. W.
Kehr
,
Phys. Rev. A
40
,
2082
(
1989
);
Erratum,
K. P. N.
Murthy
and
K. W.
Kehr
,
Phys. Rev. A
41
,
1160
(
1990
).
[PubMed]
12.
J. W.
Haus
and
K. W.
Kehr
,
Phys. Rep.
150
,
263
(
1987
).
13.
K. W.
Kehr
and
T.
Wichmann
, “
Diffusion coefficients of single and many particles in lattices with different forms of disorder
,”
Mater. Sci. Forum
223-224
,
151
(
1996
).
14.
J. W.
Haus
,
K. W.
Kehr
, and
J. W.
Lyklema
,
Phys. Rev. B
25
,
2905
(
1982
).
15.
K.
Seki
and
M.
Tachiya
,
Phys. Rev. B
65
,
014305
(
2001
).
16.
G. P.
Johari
and
M.
Goldstein
,
J. Chem. Phys.
53
,
2372
(
1970
).
17.
S.
Sastry
,
P. G.
Debenedetti
, and
F. H.
Stillinger
,
Nature
393
,
554
(
1998
).
19.
F. H.
Stillinger
and
T. A.
Weber
,
J. Chem. Phys.
81
,
5095
(
1984
).
20.
T.
Keyes
,
J. Phys. Chem. A
101
,
2921
(
1997
).
21.
W.-X.
Li
and
T.
Keyes
,
J. Chem. Phys.
111
,
5503
(
1999
).
22.
V. K.
de Souza
and
D. J.
Wales
,
J. Chem. Phys.
129
,
164507
(
2008
).
23.
V. K.
de Souza
and
D. J.
Wales
,
J. Chem. Phys.
130
,
194508
(
2009
).
24.
J. N.
Onuchic
,
Z.
Luthey-Schulten
, and
P. G.
Wolynes
,
Annu. Rev. Phys. Chem.
18
,
545
(
1997
), see Figure 3 for an illustration of random energy model.
25.
J. D.
Bryngelson
and
P. G.
Wolynes
,
J. Phys. Chem.
93
,
6902
(
1989
);
J.
Wang
,
S. S.
Plotkin
, and
P. G.
Wolynes
,
J. Phys.
7
,
395
(
1997
).
26.
R.
Ghosh
,
S.
Roy
, and
B.
Bagchi
,
J. Chem. Phys.
141
,
135101
(
2014
).
27.
R.
Zwanzig
,
Proc. Natl. Acad. Sci. U. S. A.
85
,
2029
(
1988
).
28.
S.
Lifson
and
J. L.
Jackson
,
J. Chem. Phys.
36
,
2410
(
1962
).
29.
M.
Slutsky
and
L. A.
Mirny
,
Biophys. J.
87
,
4021
(
2004
).
30.
B.
Bagchi
,
P. C.
Blainey
, and
X. S.
Xie
,
J. Phys. Chem. B
112
,
6282
(
2008
).
31.
P. C.
Blainey
,
G.
Luo
,
S. C.
Kou
,
W. F.
Mangel
,
G. L.
Verdine
,
B.
Bagchi
, and
X. S.
Xie
,
Nat. Struct. Mol. Biol.
16
,
1224
(
2009
).
32.
W.
Min
,
X. S.
Xie
, and
B.
Bagchi
,
J. Phys. Chem. B.
112
,
454
(
2008
);
[PubMed]
W.
Min
,
X. S.
Xie
, and
B.
Bagchi
,
J. Chem. Phys.
131
,
065104
(
2009
).
[PubMed]
33.
E.
Weinberger
,
Biol. Cybern.
63
,
325
336
(
1990
).
34.
Y.
Rosenfeld
,
Chem. Phys. Lett.
48
,
467
(
1977
);
Y.
Rosenfeld
,
Phys. Rev. A
15
,
2545
(
1977
).
35.
M.
Agarwal
,
M.
Singh
,
S.
Sharma
,
M. P.
Alam
, and
C.
Chakravorty
,
J. Phys. Chem. B.
114
,
6995
(
2010
);
[PubMed]
M. K.
Nandi
,
A.
Banerjee
,
S.
Sengupta
,
S.
Sastry
, and
S. M.
Bhattacharyya
,
J. Chem. Phys.
143
,
174504
(
2015
).
[PubMed]
36.
R. L.
Jack
and
P.
Sollich
,
J. Stat. Mech.
2009
,
11011
.
37.
S.
Banerjee
,
R.
Biswas
,
K.
Seki
, and
B.
Bagchi
,
J. Chem. Phys.
141
,
124105
(
2015
).
38.
K.
Seki
and
B.
Bagchi
,
J. Chem. Phys.
143
,
194110
(
2015
).
39.
C. M.
Newman
and
D. L.
Stein
,
Ann. Inst. Henri Poincare,
31
,
249
(
1995
).
40.
D. L.
Stein
and
C. M.
Newman
,
AIP Conf. Proc.
1479
,
620
(
2012
).
41.
C. M.
Newman
and
D. L.
Stein
,
Phys. Rev. Lett.
72
,
2286
(
1994
).
42.
A.
Einstein
,
Ann. Phys. (Berlin)
322
,
549
(
1905
).
43.
B.
Derrida
,
J. Stat. Phys.
31
,
433
(
1983
).
44.
H.
Cordes
,
S. D.
Baranovskii
,
K.
Kohary
,
P.
Thomas
,
S.
Yamasaki
,
F.
Hensel
, and
J.-H.
Wendorff
,
Phys. Rev. B
63
,
094201
(
2001
).
45.
S.
Kirkpatrick
,
Rev. Mod. Phys.
45
,
574
(
1973
).
46.
S.
Havlin
,
B. L.
Trus
, and
G. H.
Weiss
,
J. Phys. A
19
,
L817
(
1986
).
47.
S.
Alexander
,
J.
Bernasconi
,
W. R.
Schneier
, and
R.
Orbach
,
Rev. Mod. Phys.
53
,
175
(
1981
).
48.
P. J. H.
Denteneer
and
M. H.
Ernst
,
Phys. Rev. B
29
,
1755
(
1984
).
49.
Th. M.
Nieuwenhuizen
and
M. H.
Ernst
,
Phys. Rev. B
31
,
3518
(
1985
).
50.
M. J.
Stephen
and
R.
Kariotis
,
Phys. Rev. B
26
,
2917
(
1982
);
J.
van Polen
and
H.
van Beijeren
,
Physica A
170
,
247
(
1991
).
51.
O. F.
de Alcantara Bonfim
and
M.
Berrondo
,
J. Phys. A
22
,
4673
(
1989
).
52.
J.
Klafter
and
R.
Silbey
,
Phys. Rev. Lett.
44
,
55
(
1980
).
53.
G.
Van der Zwan
and
J. T.
Hynes
,
J. Chem. Phys.
78
,
4174
(
1983
);
G.
Van der Zwan
and
J. T.
Hynes
,
J. Phys. Chem.
89
,
4181
(
1985
).
54.
S.
Okuyama
and
D. W.
Oxtoby
,
J. Chem. Phys.
84
,
5830
(
1985
).
55.
R.
Zwanzig
,
J. Stat. Phys.
9
,
215
(
1973
).
56.
S.
Gosavi
,
L. L.
Chavez
,
P. A.
Jennings
, and
J. N.
Onuchic
,
J. Mol. Biol.
357
,
986
(
2006
).
57.
D. T.
Capraro
,
M.
Roy
,
J. N.
Onuchic
, and
P. A.
Jennings
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
14844
(
2008
).
58.
K. M.
Fisher
,
E.
Haglund
,
J. K.
Noel
,
K. L.
Hailey
,
J. N.
Onuchic
, and
P. A.
Jennings
,
PLoS One
10
,
e0144067
(
2015
).
59.
P. C.
Whitford
and
J. N.
Onuchic
,
Curr. Opin. Struct. Biol.
30
,
57
(
2015
).
60.
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
, edited by
M.
Abramowitz
and
I. A.
Stegun
(
Dover
,
New York
,
1972
).
You do not currently have access to this content.